Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 31))

  • 280 Accesses

Abstract

In this experiment we study the spatio-temporal behavior of an electron-hole (e-h) plasma. The plasma is produced by injecting both electrons and holes into a rod-shaped crystal of germanium at liquid nitrogen temperatures as shown in Fig. 1. The crystal is placed in a magnetic field parallel to its axis, and an adjustable electric field is also applied along the length of the sample. The plasma can absorb energy from the applied fields and, beyond some threshold (typically a few volts/cm at a few kilogauss), an unstable travelling helical density wave develops within the plasma, as shown in the Appendix, Fig. A-1. Several nonlinearly coupled modes can be excited within the boundaries of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review of chaotic behavior in physical systems, see H. L. Swinney:

    Google Scholar 

  2. Physica (Utrecht) 7D, 3 (1983).

    Google Scholar 

  3. See also general references, e.g., H. Haken: Advanced Synergetics (Springer-Verlag, Berlin, 1983);

    MATH  Google Scholar 

  4. John Guckenheimer and Philip Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).

    MATH  Google Scholar 

  5. D. Ruelle and F. Takens: Comm. Math. Phys. 20, 167 (1971);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. J.-P. Eckmann: Rev. Mod. Phys. 53, 643 (1981);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. E. Ott: Rev. Mod. Phys. 53, 655 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. I. L. Ivanov and S. M. Ryvkin: Zh. Tekh. Fiz. 28, 774 (1958) [Sov. Phys. Tech. Phys. 3, 722 (1958)].

    Google Scholar 

  9. R. D. Larrabee and M. C. Steele: J. Appl. Phys. 31, 1519 (1960);

    Article  ADS  Google Scholar 

  10. R. D. Larrabee: J. Appl. Phys. 34, 880 (1963);

    Article  ADS  Google Scholar 

  11. J. Bok and R. Veilex: Compt. Rend. 248, 2300 (1958).

    Google Scholar 

  12. C. E. Hurwitz and A. L. McWhorter: Phys. Rev. 134, A1033 (1964).

    Article  ADS  Google Scholar 

  13. M. Glicksman: Phys. Rev. 124, 1655 (1961);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. Shulz: Phys. Status Solidi 25, 521 (1968).

    Article  Google Scholar 

  15. G. A. Held, Carson Jeffries, and E. E. Haller: Phys. Rev. Lett. 52, 1037 (1984).

    Article  ADS  Google Scholar 

  16. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw: Phys. Rev. Lett. 45, 712 (1980).

    Article  ADS  Google Scholar 

  17. See, for example, J. D. Farmer, E. Ott, and J. A. York: Physica (Utrecht) 7D, 153 (1983).

    ADS  Google Scholar 

  18. This is the method used by A. Brandstäter et al.: Phys. Rev. Lett. 51, 1442 (1983);

    Article  MathSciNet  ADS  Google Scholar 

  19. see Peter Grassberger and Itamar Procaccia: Phys. Rev. Lett. 50, 346 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  20. For the embedding theorem to be applicable, it is required that D ≥ 2d+l, where D is the embedding dimension and d is the fractal dimension of the attractor; see Ref. 1.

    Google Scholar 

  21. See, e.g., J. P. Gollub and S. V. Benson in: Pattern Formation and Pattern Recognition, edited by H. Haken (Springer-Verlag, Berlin, 1979), p. 74.

    Chapter  Google Scholar 

  22. T. Misawa and T. Yamada: Jpn. J. Appl. Phys. 2, 19 (1963).

    Article  ADS  Google Scholar 

  23. H. S. Greenside, A. Wolf, J. Swift, and T. Pignataro: Phys. Rev. A 25, 3453 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  24. R. Z. Sagdeev and A. A. Galeev: Nonlinear Plasma Theory (Benjamin, New York, 1969).

    MATH  Google Scholar 

  25. J.-M. Wersinger, J. M. Finn, and E. Ott: Phys. Fluids 23, 1142 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. F. C. Hoh and B. Lehnert: Phys. Rev. Lett. 7, 75 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Held, G.A., Jeffries, C.D. (1985). Chaos and Turbulence in an Electron-Hole Plasma in Germanium. In: Haken, H. (eds) Complex Systems — Operational Approaches in Neurobiology, Physics, and Computers. Springer Series in Synergetics, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70795-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70795-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70797-1

  • Online ISBN: 978-3-642-70795-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics