Parallel Processes in Oculomotor Control

Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 31)


With the availability of VLSI technology to build supercomputers with a large number of interacting processors, the brain-computer analogy has found a revived interest. The RAM machine by von Neumann, [1] with a global memory for data and programs and with control by a single program counter (which holds the address of the next instruction and is updated in a regular cycle), cannot serve as a useful model for the brain. Much more interesting are parallel computers, where the architecture depends strongly on the algorithms to be performed. The ultracomputer model [2] uses a large number N of identical processors which are locally connected to a few nearest neighbor processors, e.g. in a higher dimensional cubic lattice. Such an architecture has a programming style, in which periods of independent parallel computations alternate with periods of interprocessor communication and data shuffling. For certain problems algorithms can be developed where an N-processor ultracomputer is N times faster than a RAM machine. Such ultracomputers are also structurally very different from the brain. Closest to the brain’s mode of operation is the data flow concept [3].


Retina Paral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. von Neumann, “Collected Works”, Vol. 5, Pergamon London, 1963Google Scholar
  2. [2]
    J.T. Schwartz, ACM Trans Prog Lang Sys 2, 484 (1980)MATHCrossRefGoogle Scholar
  3. [3]
    J.B. Dennis, IEEE Computer, Nov 1980, p. 48Google Scholar
  4. [4]
    G.M. Shepherd, “The Synaptic Organization of the Brain”, Oxford, 1978Google Scholar
  5. [5]
    V.B. Mountcastle, “An organizing principle for cerebral function: the unit module and the distributed system”. In “The Mindful Brain” (G.M. Edelman, V.B. Mountcastle eds) MIT Press Cambridge (1978)Google Scholar
  6. [6]
    K. Hepp, V. Henn, “Neurodynamics of the oculomotor system: space-time recording and a non-equilibrium phase transition”. In “Synergetics of the Brain” (E. Başar, H. Flohr, H. Haken, A.J. Mandell eds) Springer, Berlin (1983)Google Scholar
  7. [7]
    O. Hikosaka, R.H. Wurtz, J. Neurophysiol. 52, 266 (1984)Google Scholar
  8. [8]
    F.P. Ottes, J.A.M. van Gisbergen, J.J. Eggermont, Vision Res 24, 1169 (1984)CrossRefGoogle Scholar
  9. [9a]
    O. Hikosaka, R.H. Wurtz, J. Neurophysiol. 49, 1230, (1983)Google Scholar
  10. [9b]
    O. Hikosaka, R.H. Wurtz, J. Neurophysiol 49 1254, (1983)Google Scholar
  11. [9c]
    O. Hikosaka, R.H. Wurtz, J. Neurophysiol 49 1268, (1983)Google Scholar
  12. [9d]
    O. Hikosaka, R.H. Wurtz, J. Neurophysiol 49 1285 (1983);Google Scholar
  13. [9e]
    O. Hikosaka, R.H. Wurtz, J. Neurophysiol 53, 292 (1985)Google Scholar
  14. [10]
    R.H. Wurtz, M.E. Goldberg, D.L. Robinson, Prog. Psychobiol Physiol Psychol 9, 43 (1980)Google Scholar
  15. [11]
    J.G. Mc Elligott, E. Keller “Neuronal discharge in the posterior cerebellum: its relationship to saccadic eye movement generation” in “Functional Basis of Ocular Motility Control” (G. Lennerstrand, D.S. Zee, E.L. Keller eds), Pergamon Press, Oxford (1982)Google Scholar
  16. [12]
    K. Hepp, V. Henn, J. Jaeger, Exp. Brain Res. 45, 253 (1982)CrossRefGoogle Scholar
  17. [13]
    L. Ritchie, J. Neurophysiol. 39, 1246 (1976)Google Scholar
  18. [14]
    L.M. Optican, D.A. Robinson, J. Neurophysiol. 44, 1058 (1980)Google Scholar
  19. [15]
    T. Vilis, R. Snow, J. Hore, Exp. Brain Res. 51, 343 (1983)CrossRefGoogle Scholar
  20. [16]
    V. Henn, B. Cohen, L.R. Young, Neurosci Res Prog Bull 18, 459 (1980)Google Scholar
  21. [17].
    W. Waespe, V. Henn, “Cooperative functions of vestibular nuclei neurons and floccular Purkinje cells in the control of nystagmus slow-phase velocity: Single-cell recordings and lesion studies in the monkey”. In “Adaptive Mechanisms in Gaze Control — Facts and Theories” (A. Berthoz and G. Melvill Jones, eds) Elsevier, Amsterdam (1985)Google Scholar
  22. [18]
    S.G. Lisberger, A.F. Fuchs, J. Neurophysiol. 41, 733, (1978)Google Scholar
  23. [18a]
    S.G. Lisberger, A.F. Fuchs, J. Neurophysiol. 41, 764 (1978)Google Scholar
  24. [19]
    M. Ito, “The Cerebellum and Neural Control”, Raven Press, New York (1984)Google Scholar
  25. [20]
    Advertisement in the Scientific American, Sept 19 79, p. 9 3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. Hepp
    • 1
  1. 1.Physics DepartmentE.T.H.ZürichSwitzerland

Personalised recommendations