Operational Approaches to Complex Systems. An Introduction

  • H. Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 31)

Abstract

Let us first discuss why systems may be very complex. First of all, quite a number of systems contain very many elements. Examples are provided by the following table:

Table 1

brain

1011

1012 neurons

world

1010 people

 

laser

1018 atoms

 

fluid

1023 molecules/cm3

 

Keywords

Entropy Convection Manifold Coherence Paradi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.T.Jaynes, Phys.Rev. 106,4,620 (1957); Phys.Rev. 108, 171 (1957)MathSciNetADSCrossRefGoogle Scholar
  2. [1a]
    E.T.Jaynes, Phys.Rev. 108, 171 (1957)MathSciNetADSCrossRefGoogle Scholar
  3. [2]
    H. Haken, Application of the maximum information entropy principle to selforganizing systems, to be publishedGoogle Scholar
  4. [3]
    H. Haken, SYNERGETICS.AN Introduction, 3rd edition Springer Verlag, Berlin, Heidelberg, New York 1983MATHGoogle Scholar
  5. H. Haken, ADVANCED SYNERGETICS, Springer Verlag, Berlin, Heidelberg, New York 1983Google Scholar
  6. [3a]
    H. Haken, ADVANCED SYNERGETICS, Springer Verlag, Berlin, Heidelberg, New York 1983Google Scholar
  7. [4]
    H. Haken, LIGHT, VOL. 2, LASER LIGHT DYNAMICS North Holland Publ.Comp.,Amsterdam 1985Google Scholar
  8. [5]
    J.A.S. Kelso, Bull.Psychon.Soc. 18, 63 (1981a)Google Scholar
  9. [6]
    H. Haken, J.A.S. Kelso, H. Bunz, Biol.Cybern. 51, 347 (1985)MathSciNetMATHCrossRefGoogle Scholar
  10. [7]
    C.E.Shannon, A mathematical theory of communication, Bell System Techn. J. (1948) 27, v. 370–423, p.623–656 C.E.Shannon, W. Weaver, THE MATHEMATICAL THEORY OF COMMUNICATION, University of Illinois Press, Urbana 1949MathSciNetGoogle Scholar
  11. [7a]
    C.E. Shannon, W. Weaver, THE MATHEMATICAL THEORY OF COMMUNICATION, University of Illinois Press, Urbana 1949MATHGoogle Scholar
  12. [8]
    H. Haken, Some basic ideas on a dynamic information theory in Vol. 21 Springer Series in Synergetics, ed.P.Schuster STOCHASTIC PHENOMENA AND CHAOTIC BEHAVIOUR IN COMPLEX SYSTEMSGoogle Scholar
  13. [9]
    M. Eigen, P. Schuster, Naturwissenschaften 64 541 (1977); 65, 7 (1978), 65 341 (1978)ADSCrossRefGoogle Scholar
  14. M. Eigen, Ursprung und Evolution des Lebens auf molekularer Ebene, in Vol. 17 Springer Series in Synergetics, ed. H.Haken EVOLUTION OF ORDER AND CHAOS, 1982Google Scholar
  15. [9a]
    M. Eigen, P. Schuster, Naturwissenschaften 65, 7 (1978)ADSCrossRefGoogle Scholar
  16. [9b]
    M. Eigen, P. Schuster, Naturwissenschaften 65 341 (1978)ADSCrossRefGoogle Scholar
  17. [9c]
    M. Eigen, Ursprung und Evolution des Lebens auf molekularer Ebene, in Vol. 17 Springer Series in Synergetics, ed. H.Haken EVOLUTION OF ORDER AND CHAOS, 1982CrossRefGoogle Scholar
  18. [10]
    W. Ebeling, R. Feistel, Physical models of evolution processes, in Vol. 28 Springer series in Synergetics, ed. V.I. Krinsky, SELFORGANIZATION, 1984Google Scholar
  19. [11]
    H. Haken, THE SCIENCE OF STRUCTURE. SYNERGETICS Van Nostrand Reinhold, New York, Cincinnati, Toronto, London, Melbourne 1984Google Scholar
  20. [12]
    H. Haken, Information, information gain, and efficiency of selforganizing systems close to instability points, to be publishedGoogle Scholar
  21. [13]
    D. Farmer, T. Tiffoli, S. Wolfram, eds. Cellular Automata, Physica D 10 (1984)Google Scholar
  22. [14]
    U.C. Roux, R.H.Simoni, H.L.Swinney, Physica 8D, 257 (1983)ADSGoogle Scholar
  23. [15]
    K. Gödel, Monathsh.Math.Phys. 38, 173 (1931)CrossRefGoogle Scholar
  24. [16]
    S. Wolfram, Phys.Rev.Lett. 54, 735 (1985)MathSciNetADSCrossRefGoogle Scholar
  25. [17]
    H. Haken, Europhysics News 7 July (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations