Hypoxia and Ischemia of the Aged Brain: Pharmacotherapeutic Implications

  • S. Hoyer
Conference paper

Abstract

The prevalence of most cerebral disorders in middle and old age is now known. Illnesses such as brain infarction, Parkinson’s disease and the dementias, to mention the most important ones, are found to be most frequent in late life. They are often caused by hypoxic/ischemic events producing abnormalities in brain oxidative and energy metabolism.

Keywords

Ischemia Lactate Dementia Adenosine Pyruvate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltes PB, Schaie KW (1976) On the plasticity of intelligence in adulthood and old age: Where Horn and Donaldson fail. Amer Psychologist 31: 720–725CrossRefGoogle Scholar
  2. Baltes PB, Willis SL (1982) Plasticity and enhancement of intellectual functioning in old age. In: Craik FIM, Trehub EE (eds) Aging and cognitive processes. Plenum Press, New York, p 353–389Google Scholar
  3. Etienne A, Chapelat MY, Braquet M, Clostre F, Drieu K, DeFeudis FV, Braquet P (1984) In vivo studies of free radical scavenging activity; relation to cerebral ischemia. In: Bes A, Braquet P, Paoletti R, Siesjo BK (eds) Cerebral ischemia. Excerpta Medica, Amsterdam, p 379– 384Google Scholar
  4. Gottstein U (1984) Hemodilution: Therapy in acute ischemic stroke. In: Bes A, Braquet P, Paoletti R, Siesjo BK (eds) Cerebral ischemia. Excerpta Medica, Amsterdam, p 311–324Google Scholar
  5. Hamer J, Wiedemann K, Berlet H, Weinhardt F, Hoyer S (1978) Cerebral glucose and energy metabolism, cerebral oxygen consumption and blood flow in arterial hypoxemia. Acta Neurochir 44: 151–160CrossRefGoogle Scholar
  6. Heiss WD, Ilsen HW, Wagner R, Pawlik G, Wienhard K (1983) Remote functional depression of glucose metabolism in stroke and its alteration by activating drugs. In: Heiss WD, Phelps ME (eds) Positron emission tomography of the brain. Springer, Berlin, p 162–168Google Scholar
  7. Herskovits E, Famulari A, Tamaroff L, Gonzalez AM, Vazquez A, Smud R, Fraiman H, Vila J, Matera V (1981) Randomised trial of pentoxifylline versus acetylsalicylic acid plus dipyridamole in preventing transient ischaemic attacks. Lancet 1: 966–968PubMedCrossRefGoogle Scholar
  8. Hoffman WE, Pelligrino D, Miletich DJ, Albrecht RF (1984) Cerebrovascular and metabolic response of the aged rat to hypoxia. In: Fieschi C, Lenzi GL, Loeb CW (eds) Effects of aging on regulation of cerebral blood flow and metabolism. Karger, Basel, p 8–16Google Scholar
  9. Hollander CF, van Zwieten MJ, Zurcher C (1983) The aged animal. In: Gispen WH, Traber J (eds) Aging of the brain. Elsevier, Amsterdam, p 187–196Google Scholar
  10. Horn JL, Cattell RB (1976) Age differences in fluid and crystallized intelligence. Acta Psycholog 26: 107–129CrossRefGoogle Scholar
  11. Horn JL, Donaldson G (1976) On the myth of intellectual decline in adulthood. Amer Psychologist 31: 710–719Google Scholar
  12. Hoyer S (1982a) The young-adult and normaly aged brain. Its bloodflow and oxidative metabolism. A review - part I. Arch Gerontol Geriatr 1: 101–116CrossRefGoogle Scholar
  13. Hoyer S (1982b) The abnormally aged brain. Its blood flow and oxidative metabolism. A review - part II. Arch Gerontol Geriatr 1: 195–207CrossRefGoogle Scholar
  14. Hoyer S (1983) Circulation and oxidative metabolism in the normally and abnormally aging brain. In: Gispen WH, Traber J (eds) Aging of the brain. Elsevier, Amsterdam, p 151–165Google Scholar
  15. Hoyer S (1984) The effect of naftidrofuryl on cyanide-induced hypoxic damage to glucose and energy metabolism in brain cortex of rats. Arzneim Forsch/Drug Res 34: 412–416Google Scholar
  16. Iwangoff P, Enz A, Armbruster R, Emmenegger H, Pataki A, Sandoz P (1980) Der Einfluß von Alter. Zeitspanne bis zur postmortalen Isolierung des Gewebes sowie der Agonie auf einige glykolytische Enzyme in autoptischen Gehirnproben des Menschen. Akt Gerontol 10: 203–212Google Scholar
  17. Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolizing enzymes in brain regions of adult and aging rats. J Neurochem 37: 1548–1556PubMedCrossRefGoogle Scholar
  18. LePoncin-Lafltte M, Rapin J, Rapin JR (1980) Effect of Gingko biloba on changes induced by quantitative cerebral microembolization in rats. Arch Int Pharmacodyn 243: 236–244Google Scholar
  19. LePoncin-Lafitte M, Grosdemouge C, Roy–Billon C, Duterte D, Rapin JR (1982) Effects of naftidrofuryl on cerebral hemodynamic, metabolism and function after a retracted ischaemia. Arch Int Pharmacodyn 260: 218–229Google Scholar
  20. Ljunggren B, Norberg K, Siesjö BK (1974) Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77: 173–186PubMedCrossRefGoogle Scholar
  21. Patel MS (1977) Age-dependent changes in the oxidative metabolism in rat brain. J Gerontol 32: 643–646PubMedGoogle Scholar
  22. Peng MT, Peng YI, Chen FN (1977) Age-dependent changes in the oxygen consumption of the cerebral cortex, hypothalamus and amygdaloid in rats. J Gerontol 32: 517–522PubMedGoogle Scholar
  23. Schlaepfer WW (1971) Experimental alterations of neurofilaments and neurotubules by calcium and other ions. Exp Cell Res 67: 73–80PubMedCrossRefGoogle Scholar
  24. Strughold H (1944) Hypoxydose. Klin Wochenschr 23: 221–222CrossRefGoogle Scholar
  25. Ulfert G, Schmidt U, Hoyer S (1982) Glucose and energy metabolism of rat cerebral cortex during aging. In: Hoyer S (ed) The aging brain. Physiological and pathophysiological aspects. Exp Brain Res Suppl 5. Springer, Berlin, p 102–111Google Scholar
  26. van Reempts J, Haseldonckx M, van de Ven M, Borgers M (1984) Morphology and ultrastructural calcium distribution in the rat hippocampus after severe transient ischemia. In: Bes A, Braquet P, Paoletti R, Siesjö BK (eds) Cherebral ischemia. Excerpta Medica, Amsterdam, p 113–118Google Scholar
  27. Wiedemann K, Hoyer S (1983) Brain protection. Morphological, pathophysiological and clinical aspects. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • S. Hoyer
    • 1
  1. 1.Institute of Pathochemistry and General NeurochemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations