The Effects of Nicergoline and Other Vaso-Active Substances on Molecular Biological Processes in the Brain and Their Effects on the Learning Abilities of Rats

  • P. Chandra
  • A. Paul


Changes in brain function are often an expression of an impaired biosynthetic interaction between proteins and nucleic acids in brain cells. It is known, for instance, that the processes of synthesis and metabolism of many macromolecules in the cells depend on adequate supplies of nutrients and oxygen. Consequently cerebral functions respond particularly sensitively to drug effects. The modes of action of drugs as well as of the endorphines have been the subjects of a number of papers [1–14]. The studies showed the hallucinogens to have the most marked effects on cerebral processes. It was found that the effects extended to RNA and protein biosynthesis and to the serotonin concentration in the brain.


Tartaric Acid Stimulant Effect Protein Biosynthesis Brain Extract Memory Retention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennet JL, Aghajanian GK (1974) Life Sei 15: 1935CrossRefGoogle Scholar
  2. 2.
    Clouet D, Ratner M (1967) Brain Res 4: 33PubMedCrossRefGoogle Scholar
  3. 3.
    Clouet D, Ratner M (1969) J Neurochem 15: 17CrossRefGoogle Scholar
  4. 4.
    Corrodi H, Fuxe K, Hokfelt T, Schou M (1967) Psychopharmacologia 11: 345PubMedCrossRefGoogle Scholar
  5. 5.
    Coyle JT, Snyder SH (1969) J Pharmacol Exp Ther 170: 221PubMedGoogle Scholar
  6. 6.
    Creveling CR, Daly J, Tokuyama T, Witkop B (1968) Biochem Pharmacol 17: 65PubMedCrossRefGoogle Scholar
  7. 7.
    Dodda BR, Norris JR (1972) Hopkins Med J 130: 317Google Scholar
  8. 8.
    Farrow JT, Van Vunakis H (1973) Biochem Pharmacol 22: 1103PubMedCrossRefGoogle Scholar
  9. 9.
    Hughes J (1975) Brain Res 88: 1CrossRefGoogle Scholar
  10. 10.
    Pasternak GW, Goodman R, Snyder SH (1975) Life Sei 16: 1765CrossRefGoogle Scholar
  11. 11.
    Rutledge CO, Weiner N (1967) J Pharmacol Exp Ther 157: 290PubMedGoogle Scholar
  12. 12.
    Schildkrat JJ, Logue MA, Dodge GA (1969) Psychopharmacol 14: 315CrossRefGoogle Scholar
  13. 13.
    Szara SI (1971) In: Lajtha A (ed) Handbook of neurochemistry, vol VI. Plenum Press, New YorkGoogle Scholar
  14. 14.
    Terenius L, Wahlstrom A (1974) Acta Pharmacol Toxicol [Suppl 1] 35: 55Google Scholar
  15. 15.
    Arcamone F: persönliche MitteilungGoogle Scholar
  16. 16.
    Brinker JM, Madore HP, Bello LJ (1973) Biochem Biophys Res Commun 52: 928PubMedCrossRefGoogle Scholar
  17. 17.
    Clouet DH (1971) In: Lajtha A (ed) Handbook of neurochemistry, vol VI. Plenum Press, New YorkGoogle Scholar
  18. 18.
    Cohen HD, Barondes SH (1967) Science 157: 333PubMedCrossRefGoogle Scholar
  19. 19.
    Verzar-McDougall EJ (1957) Gerontol 1: 65CrossRefGoogle Scholar
  20. 20.
    Doty BA, Doty LA (1964) J Comp Phys Psych 57: 331CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. Chandra
  • A. Paul
    • 1
  1. 1.Department of Molecular Biology, ZBCHospital of the University of FrankfurtFrankfurtGermany

Personalised recommendations