Neurochemical Effects of Ergoline Derivatives

  • A. Moretti
  • N. Carfagna
  • C. Caccia
  • M. Carpentieri
  • A. Amico
  • G. Marchi
  • F. Trunzo
  • Trunzo


Sermion (nicergoline) is an ergoline derivative clinically active in chronic cerebral vascular insufficiency [1] and in patients with senile dementia [2].


Biogenic Amine Senile Dementia Dopamine Turnover Neurochemical Effect High Performance Liquid Chromatog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehrl S, Blaha L (1981) Untersuchung von Verlaufstypen bei zerebralen Hypoxidosen am Beispiel einer Doppelblindstudie mit Nicergolin ( Sermion ). Therapiewoche 31: 3143–3155Google Scholar
  2. 2.
    Arrigo A, Moglia A, Borsotti L, Massarini M, Alfonsi E, Battaglia A, Sacchetti G (1982) A double-blind, placebo controlled, crossover trial with nicergoline in patients with senile dementia. Int J Clin Pharmacol Res [Suppl 1] 2: 23–41Google Scholar
  3. 3.
    Moretti A (1979) Metabolische und neurochemische Wirkung von Nicergolin auf das Zen-tralnervensystem. Arzneimittelforsch (Drag Res) 29: 1213–1223PubMedGoogle Scholar
  4. 4.
    Benzi G, Arrigoni E, Dagani F, Marzatico F, Curti D, Raimondo S, Dossena M, Polgatti M, Villa RF (1980) Age-dependent modification of drug interference on the enzymatic activities of the rat brain. Exp Gerontol 15: 593–603PubMedCrossRefGoogle Scholar
  5. 5.
    Pradhan SN (1980) Central neurotransmitters and aging. Life Sei 26: 1643–1656CrossRefGoogle Scholar
  6. 6.
    Brown RM, Kehr W, Carlsson A (1975) Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia. Brain Res 85: 491–509PubMedCrossRefGoogle Scholar
  7. 7.
    Carfagna N, Caccia C, Sammartini U (1984) Brain aging and turnover of biogenic amines. International Congress on functions in the ageing brain. From Physiological Ageing to Dementia. 12–14 April 1984, Saint Germain en Laye (France)Google Scholar
  8. 8.
    Dienel GA, Pulsinelli WA, Duffy TE (1980) Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 35: 1216–1226PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper HK, Zalewska T, Kawakami S, Hossmann KA, Kleihues P (1977) The effect of isch-aemia and recirculation on protein synthesis in the rat brain. J Neurochem 28: 929–934PubMedCrossRefGoogle Scholar
  10. 10.
    Fando JL, Salinas M, Wasterlain CG (1980) Age-dependent changes in brain protein synthesis in the rat. Neurochem Res 5: 373–383PubMedCrossRefGoogle Scholar
  11. 11.
    Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain-I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] DOPA in various regions of the brain. J Neurochem 13: 655–669PubMedCrossRefGoogle Scholar
  12. 12.
    Greengrass P, Bremner R (1979) Binding characteristics of 3H-prazosin to rat brain a-adren-ergic receptors. Eur J Pharmacol 55: 323–326PubMedCrossRefGoogle Scholar
  13. 13.
    U’Prichard DC, Greenberg DA, Snyder SH (1977) Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alfa noradrenergic receptors. Mol Pharmacol 13: 454–473PubMedGoogle Scholar
  14. 14.
    Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12: 568–580PubMedGoogle Scholar
  15. 15.
    Lazareno S, Nahorski SR (1982) Selective labelling of dopamine (D2) receptors in rat striatum by [3H]-domperidone but not by [3H]-spiperone. Eur J Pharmacol 81: 273–285PubMedCrossRefGoogle Scholar
  16. 16.
    Creese I, Schneider R, Snyder SH (1977) 3H-Spiroperidol labels dopamine receptors in pi-tuitary and brain. Eur J Pharmacol 46: 377–381Google Scholar
  17. 17.
    Battaglia G, Titeler M (1982) [3H] N-propylapomorphine and [3H] Spiperone binding in brain indicate two states of the D2-Dopamine receptor. Eur J Pharmacol 81: 493–498Google Scholar
  18. 18.
    Nelson DL, Herbet A, Bourgoin S, Glowinski J, Hamon M (1978) Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Mol Pharmacol 14: 983–995PubMedGoogle Scholar
  19. 19.
    Enna SJ, Snyder SH (1975) Properties of y-aminobutyric acid ( GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res 100: 81–97Google Scholar
  20. 20.
    Yamamura HT, Snyder SH (1974) Muscarinic cholinergic binding in rat brain. Proc Natl Acad Sei USA 71: 1725–1729CrossRefGoogle Scholar
  21. 21.
    Westerink BHC, Korf J (1977) Rapid concurrent automated fluorimetric assay of noradrenaline, dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 3-methoxytyramine in milligram amounts of nervous tissue after isolation on Sephadex G10. J Neurochem 29: 697–706PubMedCrossRefGoogle Scholar
  22. 22.
    Curzon G, Green AR (1970) Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol 39: 653–655PubMedGoogle Scholar
  23. 23.
    Sperk G (1982) Simultaneous determination of serotonin, 5-hydroxyindoleacetic acid, 3,4- dihydroxyphenylacetic acid and homovanillic acid by high performance liquid chromatography with electrochemical detection. J Neurochem 38: 840–843PubMedCrossRefGoogle Scholar
  24. 24.
    Meek JL, Neff NH (1972) Fluorometric estimation of4-hydroxy-3-methoxyphenylethylene- glycol sulphate in brain. Br J Pharmacol 45: 435–441PubMedGoogle Scholar
  25. 25.
    Giuffrida AM, Gadaleta MN, Serra I, Renis M, Geremia E, Del Prete G, Saccone C (1979) Mitochondrial DNA, RNA, and protein synthesis in different regions of developing rat brain. Neurochem Res 4: 37–52PubMedCrossRefGoogle Scholar
  26. 26.
    Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  27. 27.
    Caccia C, Moretti A (1983) In vivo labeling of a1-adrenoceptors with [3H] Prazosin. Neurosci Lett [Suppl] 14: S49Google Scholar
  28. 28.
    Burki HR, Asper H, Ruch W, Züger PE (1978) Bromocriptine, dihydroergotoxine, methy- sergide, d-LSD, CF 25-397 and 29-712: effects on the metabolism of the biogenic amines in the brain of the rat. Psychopharmacology 57: 227–237PubMedCrossRefGoogle Scholar
  29. 29.
    Hofmann M, Tonon GC, Spano PF, Trabucchi M (1979) Mechanisms of dihydroergo- toxine’s effect on prolactin release. J Pharm Pharmacol 31: 42–44PubMedCrossRefGoogle Scholar
  30. 30.
    Paul A, Chandra P (1979) Einfluß von Nicergolin auf molekularbiologische Prozesse im Gehirn und seine Auswirkung auf die Lernfähigkeit der Ratte. Arzneimittelforsch (Drug Res) 29: 1238–1251Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Moretti
  • N. Carfagna
  • C. Caccia
  • M. Carpentieri
  • A. Amico
  • G. Marchi
  • F. Trunzo
    • 1
  • Trunzo
  1. 1.Research CenterFarmitalia Carlo ErbaNerviano, MilanoItaly

Personalised recommendations