Skip to main content

Immunorecognition in Invertebrates with Special Reference to Molluscs

  • Conference paper
Immunity in Invertebrates

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

All metazoan animals are protected against invading organisms by an internal defence system. This system comprises different elements. It consists of various cells, tissues and organs which enable organisms to react against potentially harmful pathogens from the external environment and against effete or derailed autologous material. Besides these structural components which form the cellular limb of the immune system diverse humoral factors produced by (several types of) blood cells are engaged in internal defence. In addition to lymphocytes, non-lymphoid cells, especially macrophage- like cells play a crucial role in the immune system (Fig. 1). Macrophages (a) are involved in the induction phase of the immune response (in the recognition of antigenic material and presentation of this material to lymphoid cells; (b) display a regulatory role in the immune response, and (c) play a part in the final phase of the immune reaction (uptake and degradation of antigenic material). The immune system can be divided in a non-specific and a specific part, the latter being characterized by memory formation. Depending on the phylogenetic development of the immune system only few, or more different cell types and humoral factors play a part in the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton RT, Evans EE (1968) Bacteriophage clearance in the oyster ( Crassostrea virginica ). J Bacteriol 95: 1260–1266

    Google Scholar 

  2. Bayne CJ (1973) Molluscan internal defense mechanism: the fate of C14-labeled bacteria in the land snail Helix pomatia (L). J Comp Physiol 86: 17–25

    Article  Google Scholar 

  3. Bayne CJ (1980) Molluscan immunity: induction of elevated immunity in the land snail (Helix) by injections of bacteria (Pseudomonas aeruginosa). Dev Comp Immunol 4: 43–54

    Article  PubMed  CAS  Google Scholar 

  4. Bayne CJ, Buckley PM, Dewan PC (1980) Macrophage-like hemocytes of resistant Biomphalaria glabrata are cytotoxic for sporocysts of Schistosoma mansoni in vitro. J Parasitol 39: 413–419

    Article  Google Scholar 

  5. Bayne CJ, Sminia T, Van der Knaap WPW (1980) Immunological memory: status of molluscan studies. In: Manning MJ (ed) Phylogeny of immunological memory, Elsevier/North Holland, Biomedical Press, Amsterdam, pp 57–64

    Google Scholar 

  6. Boer HH, Sminia T (1976) Sieve structures of slit diaphragms of podocytes and pore cells of gastropod molluscs. Cell Tissue Res 170: 221–229

    Article  PubMed  CAS  Google Scholar 

  7. Boswell CA, Bayne CJ (1984) Isolation, characterization and functional assessment of a hem-agglutinin from the plasma of Biomphalaria glabrata, intermediate host of Schistosoma man-soni. Dev Comp Immunol 8: 559–568

    Article  PubMed  CAS  Google Scholar 

  8. Cheng TC (1978) The role of lysosomal hydrolases in molluscan cellular response to immunological challenge. Comp Pathobiol 4: 59–71

    CAS  Google Scholar 

  9. Cheng TC, Yoshino TP (1976) Lipase activity in the hemolymph of Biomphalaria glabrata ( Mollusca) challenged with bacterial lipids. J Invertebr Pathol 28: 143–146

    Google Scholar 

  10. Cheng TC, Chorney MJ, Yoshino TP (1977) Lysozyme-like activity in the hemolymph of Biomphalaria glabrata challenged with bacteria. J Invertebr Pathol 29: 170–174

    Article  PubMed  CAS  Google Scholar 

  11. Cheng TC, Guida VG, Gerhart PL (1978) Aminopeptidase and lysozyme activity levels and serum protein concentrations in Biomphalaria glabrata ( Mollusca) challenged with bacteria. J Invertebr Pathol 32: 297–302

    Google Scholar 

  12. Cheng TC, Howland KH, Moran HJ, Sullivan JT (1983) Studies on parasitic castration: aminopeptidase activity levels and protein concentrations in Illyanassa obsoleta ( Mollusca) parasitized by larval trematodes. J Invertebr Pathol 42: 42–50

    Google Scholar 

  13. Cheng TC, Rodrick GE, Foley DA, Koehler SA (1975) Release of lysozyme from hemolymph cells of Mercenaria mercenaria during phagocytosis. J Invertebr Pathol 25: 261–265

    Article  PubMed  CAS  Google Scholar 

  14. Cushing JE, Evans EE, Evans ML (1971) Induced bactericidal responses of abalones. J Invertebr Pathol 17: 446–448

    Article  Google Scholar 

  15. Jeong KH, Lie KJ, Heyneman D (1983) The ultrastructure of the amebocyte-producing organ in Biomphalaria glabrata. Dev Comp Immunol 7: 217–228

    Article  PubMed  CAS  Google Scholar 

  16. Jeong KH, Sussman S, Rosen SD, Lie KJ, Heyneman D (1981) Distribution and variation of hemagglutinating activity in the haemolymph of Biomphalaria glabrata. J Invertebr Pathol 38: 256–263

    Article  PubMed  CAS  Google Scholar 

  17. Joky A, Matricon-Gondran M, Benex J (1983) Fine structural differences in the amoebocytes of Biomphalaria glabrata. Dev Comp Immunol 7: 669–672

    Article  Google Scholar 

  18. Joky A, Matricon-Gondran M, Benex J (1985) Response to the amoebocyte-producing organ of sensitized Biomphalaria glabrata after exposure to Echinostoma caproni miracidia. J Invertebr Pathol 45: 28–33

    Article  PubMed  CAS  Google Scholar 

  19. Kassim OO, Richards CS (1978) Schistosoma mansoni: lysozyme activity in Biomphalaria gla¬brata during infection with two strains. Exp Parasitol 46: 213–217

    Article  PubMed  CAS  Google Scholar 

  20. Li CP, Prescott B, Johnes WG (1962) Antiviral activity of a fraction of abalone juice. Proc Soc Exp Biol Med 109: 534–538

    PubMed  CAS  Google Scholar 

  21. Lie KJ, Heyneman D, Lim HK (1975) Studies on resistance in snails: specific resistance induced by irradiated miracidia of Echinostoma lindoense in Biomphalaria glabrata snails. J Parasitol 5: 627–631

    CAS  Google Scholar 

  22. Lie KJ, Heyneman D, Yau P (1975) The origin of amebocytes in Biomphalaria glabrata. J Parasitol 61: 574–576

    Article  Google Scholar 

  23. Lie KJ, Jeong KH, Heyneman D (1980) Inducement of miracidia-immobilizing substance in the haemolymph of Biomphalaria glabrata. Int J Parasitol 10: 183–188

    Article  PubMed  CAS  Google Scholar 

  24. Lie KJ, Jeong KH, Heyneman D (1982) Further characterization of acquired resistance in Biomphalaria glabrata. J Parasitol 68: 529–531

    Article  PubMed  CAS  Google Scholar 

  25. Michelson EH, Dubois L (1977) Agglutinins and lysins in the molluscan family Planorbidae: a survey of hemolymph, eggmasses, and albumen-gland extracts. Biol Bull (Woods Hole) 153: 219–227

    Article  CAS  Google Scholar 

  26. Ottaviani E (1983) The blood cells of the freshwater snail Planorbis corneus (Gastropoda, Pulmonata). Dev Comp Immunol 7: 209–216

    Article  PubMed  CAS  Google Scholar 

  27. Parish CR (1977) Simple model for self-non-self-discrimination in invertebrates. Nature 267: 711–713

    Article  PubMed  CAS  Google Scholar 

  28. Prowse RH, Tait NN (1969) In vitro phagocytosis by amoebocytes from the haemolymph of Helix aspersa (Müller) I. Evidence for opsonic factor(s) in serum. Immunology 17: 437–443

    Google Scholar 

  29. Ratanarat-Brockelman C (1977) Isolation of nematode inhibitor from hemolymph of the snail Helix aspersa. Biol Bull (Woods Hole) 152: 406–414

    Article  CAS  Google Scholar 

  30. Reade PC (1968) Phagocytosis in invertebrates. Aust J Exp Biol Med Sci 46: 219–229

    Article  PubMed  CAS  Google Scholar 

  31. Renwrantz L (1979) Eine Untersuchung molekularer und zellulärer Bestandteile der Hämolymphe von Helix pomatia unter besonderer Berücksichtigung immunobiologisch aktiver Komponenten. Zool Jahrb Physiol 83: 283–333

    CAS  Google Scholar 

  32. Renwrantz LR, Cheng TC (1977) Identification of agglutinin receptors on haemocytes of Helix pomatia. J Invertebr Pathol 29: 88 - 96

    Article  PubMed  CAS  Google Scholar 

  33. Renwrantz LR, Schäncke W, Harm H, Erl H, Liebsch H, Gercken J (1981) Discriminative ability and function of the immunobiological recognition system of the snail Helix pomatia. J Comp Physiol 141: 447–488

    Google Scholar 

  34. Rondelaud D, Barthe D (1981) The development of the amoebocyte-producing organ in Lymnaea truncatula ( Müller) by Fasciola hepatica (L ). Z Parasitenkd 65: 331–341

    Google Scholar 

  35. Schmid LS (1975) Chemotaxis of hemocytes from the snail Viviparus malleatus. J Invertebr Pathol 25: 125–131

    Article  Google Scholar 

  36. Schoenberg DA, Cheng TC (1980) Lectinbinding specificities of hemocytes from two strains of Biomphalaria glabrata as determined by microhemadsorption assays. Dev Comp Immunol 4: 617–628

    Article  PubMed  CAS  Google Scholar 

  37. Schoenberg DA, Cheng TC (1981) The behaviour of Biomphalaria glabrata ( Gastropoda: Pulmonata) hemocytes following exposure to lectins. Trans Am Microsc Soc 100: 345–358

    Google Scholar 

  38. Sminia T (1972) Structure and function of blood and connective tissue cells of the freshwater pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry. Z Zellforsch Mikrosk Anat 130: 497–526

    Article  PubMed  CAS  Google Scholar 

  39. Sminia T (1974) Haemopoiesis in the freshwater snail Lymnaea stagnalis studied by electron microscopy and autoradiography. Cell Tissue Res 150: 443–454

    Article  PubMed  CAS  Google Scholar 

  40. Sminia T, Barendsen L (1980) A comparative morphological and enzyme histochemical study on blood cells of the freshwater snails Lymnaea stagnalis, Biomphalaria glabrata and Bulinus truncatus. J Morphol 165: 31–37

    Google Scholar 

  41. Sminia T, Borghart-Reinders E, Van de Linde AW (1974) Encapsulation of foreign materials experimentally introduced into the freshwater snail Lymnaea stagnalis. An electron microscopic and autoradiographic study. Cell Tissue Res 153: 307–326

    Google Scholar 

  42. Sminia T, Van der Knaap WPW, Kroese FGM (1979) Fixed phagocytes in the freshwater snail Lymnaea stagnalis. Cell Tissue Res 196: 545–548

    Article  PubMed  CAS  Google Scholar 

  43. Sminia T, Van der Knaap WPW, Edelenbosch P (1979) The role of serum factors in phagocytosis of foreign particles by blood cells of the freshwater snail Lymnaea stagnalis. Dev Comp Immunol 3: 37–44

    Article  PubMed  CAS  Google Scholar 

  44. Sminia T, Winsemius AA, Van der Knaap WPW (1981) Recognition of foreignness by blood cells of the freshwater snail Lymnaea stagnalis, with special reference to the role and structure of the cell coat. J Invertebr Pathol 38: 175–183

    Article  Google Scholar 

  45. Stanislawsky E, Renwrantz L, Becker W (1976) Soluble blood group reactive substances in the hemolymph of Biomphalaria glabrata ( Mollusca ). J Invertebr Pathol 28: 301–308

    Google Scholar 

  46. Tripp MR (1970) Defense mechanisms of mollusks. J Reticuloendothel Soc 7: 173–182

    PubMed  CAS  Google Scholar 

  47. Van der Knaap WPW, Boots AMH, Van Asselt LA, Sminia T (1983) Specificity and memory in increased defence reactions against bacteria in the pond snail Lymnaea stagnalis. Comp Immunol 7: 435–443

    Article  Google Scholar 

  48. Van der Knaap WPW, Doderer A, Boerrigter-Barendsen LH, Sminia T (1982) Some properties of an agglutinin in the haemolymph of the pond snail Lymnaea stagnalis. Biol Bull (Woods Hole) 162: 404–412

    Article  Google Scholar 

  49. Van der Knaap WPW, Boerrigter-Barendsen LH, Van den Hoeven DSP, Sminia T (1981) Immunocytochemical demonstration of a humoral defence factor in blood cells (amoebocytes) of the pond snail Lymnaea stagnalis. Cell Tissue Res 219: 292–296

    Article  Google Scholar 

  50. Van der Knaap WPW, Sminia T, Schutte R, Boerrigter-Barendsen LH (1983) Cytophilic receptors for foreignness and some factors which influence phagocytosis by invertebrate leucocytes: in vitro phagocytosis by amoebocytes of the pond snail Lymnaea stagnalis. Immunology 48: 377–383

    PubMed  Google Scholar 

  51. Van der Knaap WPW, Tensen CP, Kroese FGM, Boerrigter-Barendsen LH (1982) Adaptive defence reactions against bacteria in the pond snail Lymnaea stagnalis. Dev Comp Immunol 6: 775–780

    PubMed  Google Scholar 

  52. Vasta GR, Sullivan JT, Cheng TC, Marchalonis JJ, Warr GW (1982) A cell membrane-associated lectin of the oyster hemocyte. J Invertebr Pathol 40: 367–377

    Article  CAS  Google Scholar 

  53. Wittke M, Renwrantz L (1984) Quantification of cytotoxic hemocytes of Mytilus edulis using a cytotoxicity assay in agar. J Invertebr Pathol 43: 248–253

    Article  PubMed  CAS  Google Scholar 

  54. Yoshino TP (1981) Concanavalin A-induced receptor redistribution on Biomphalaria glabrata hemocytes: characterization of capping and patching responses. J Invertebr Pathol 38: 102–112

    Article  PubMed  CAS  Google Scholar 

  55. Yoshino TP (1982) Lectin-induced modulation of snail hemocyte surface determinants: clearance of Con A-receptor complexes. Dev Comp Immunol 6: 451–461

    PubMed  CAS  Google Scholar 

  56. Yoshino TP, Granath Jr WO (1983) Identification of antigenically distinct hemocyte sub populations in Biomphalaria glabrata ( Gastropoda) using monoclonal antibodies to surface membrane markers. Cell Tissue Res 232: 553–564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sminia, T., van der Knaap, W.P.W. (1986). Immunorecognition in Invertebrates with Special Reference to Molluscs. In: Brehélin, M. (eds) Immunity in Invertebrates. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70768-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70768-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70770-4

  • Online ISBN: 978-3-642-70768-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics