Skip to main content

Invertebrate Lectins: Biochemical Heterogeneity as a Possible Key to Their Biological Function

  • Conference paper
Immunity in Invertebrates

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The molecular basis for discrimination between self and non-self, a crucial distinction at all levels of organization of living matter, remains one of the intriguing puzzles of immunobiology. In order to survive, all animals have evolved some kind of response to recognize and eliminate non-self without destroying self. The first cell to appear that was specialized for use in host defense was the mononuclear phagocytic cell. The amoebocytes, coelomocytes, or hemocytes of invertebrates are believed to be ancestors of the monocyte/macrophage system found in higher vertebrates and man. Phagocytosis is a fundamental attribute of many cells, and is particularly important for a vast number of invertebrates, since the process is related to nutrition and excretion as well as to defense[25].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton RT, Bennett JC, Evans EE, Schrohenloher RE (1969) Physical and chemical characterization of an oyster hemagglutinin. J Biol Chem 244: 4128–4135

    PubMed  CAS  Google Scholar 

  2. Anderson RS, Good RA (1976) Opsonic involvement in phagocytosis by molluscan hemocytes. J Invertebr Pathol 27: 57–64

    Article  PubMed  CAS  Google Scholar 

  3. Baldo BA, Sawyer WH, Stick RV, Uhlenbruck G (1978) Purification and characterization of a galactan-reactive agglutinin from the clam Tridacna maxima ( Röding) and a study of its combining site. Biochem J 175: 467–477

    Google Scholar 

  4. Bang FB (1973) Immune reactions among marine and other invertebrates. Bioscience 23: 584–589

    Article  Google Scholar 

  5. Barondes SH (1981) Lectins: their multiple endogenous cellular functions. Annu Rev Biochem 50: 207–231

    Article  PubMed  CAS  Google Scholar 

  6. Bonaventura C, Bonaventura J (1983) Respiratory pigments: structure and function. In: Hochachka PW (ed) Environmental biochemistry and physiology. Academic Press, New York, pp 1–50 (The mollusca, vol 2 )

    Google Scholar 

  7. Boyd WC, Shapleigh E (1954) Antigenic relations of blood group antigen as suggested by tests with lectins. J Immunol 73: 226–231

    PubMed  CAS  Google Scholar 

  8. Brandin ER, Pistole TG (1983) Polyphemin: a teichoic acidbinding lectin from the horseshoe crab, Limulus polyphemus. Biochem Biophys Res Commun 113: 611–617

    Google Scholar 

  9. Bretting H, Kabat EA (1976) Purification and characterisation of the agglutinins from the sponge Axinella polypoides and a study of their combining sites. Biochemistry 15: 3228–3236

    Article  PubMed  CAS  Google Scholar 

  10. Bretting H, Kabat EA, Liao J, Pereira MEA (1976) Purification and characterisation of the agglutinins from the sponge Aaptos papillata and a study of their combining sites. Biochemistry 15: 5029–5038

    Article  PubMed  CAS  Google Scholar 

  11. Bretting H, Stanislawski E, Jacobs G, Becker W (1983) Isolation and characterization of a lectin from the snail Biomphalaria glabrata and a study of its combining site. Biochem Biophys Acta 749: 143–152

    Article  PubMed  CAS  Google Scholar 

  12. Cheng TC (1981) Bivalves. In: Ratcliffe NA, Rowley AF (eds) Invertebrate blood cells, vol. 1 Academic Press, London, pp 233–300

    Google Scholar 

  13. Cheng TC (1984) Classification of molluscan hemocytes based on functional evidences. In: Cheng TC (ed) Invertebrate blood, cells and serum factors. Plenum, New York, pp 111–146 (Comparative pathobiology, vol 6 )

    Google Scholar 

  14. Chorney MJ, Cheng TC (1980) Discrimination of self and non-self in invertebrates. In: Marchalonis JJ, Cohen N (eds) Self/non-self discrimination. Plenum, New York, pp 37–54 (Contemporary topics in immunobiology, vol 9 )

    Google Scholar 

  15. Cohen E (1979) (ed) Biomedical applications of the horseshoe crab (Limulidae). Progr Clin Biol Res, vol 29. Liss, New York

    Google Scholar 

  16. Coombe DR, Ey PL, Jenkin CR (1982) Haemagglutinin levels in haemolymph from the colonial ascidian Botrylloides leachii following injection with sheep or chicken erythrocytes. Aust J Exp Biol Med Sci 60: 359–368

    Article  PubMed  Google Scholar 

  17. Cooper EL, Stein EA, Wojdani A (1984) Recognition receptors in Annelids. In: Cohen E (ed) Recognition proteins, receptors and probes: Invertebrates. Liss, New York, pp 43–54 (Prog Clin Biol Res, vol 157 )

    Google Scholar 

  18. Cornick JW, Stewart JE (1973) Partial characterisation of a natural agglutinin in the haemolymph of the lobster ( Homarus americanus ). J Invertebr Pathol 21: 255–262.

    Google Scholar 

  19. Dales RP (1978) Defence mechanisms. In: Mill PJ (ed) Physiology of Annelids. Academic Press, London, p 479

    Google Scholar 

  20. Ey PL, Jenkin CR (1982) Molecular basis of self/non-self discrimination in the invertebrata. In: Cohen H, Siegel MM (eds) The reticuloendothelial system. A comprehensive treatise. Plenum, New York London, pp 321–391 (Phylogeny and Ontogeny, vol 3 )

    Google Scholar 

  21. Feng SY, Feng JS, Yamasu T (1977) Roles of Mytilus coruscus and Crassostrea gigas blood cells in defense and nutrition. Comp Pathobiol 3: 31–67

    Google Scholar 

  22. Fernandez-Moran H, Marchalonis JJ, Edelman GM (1968) Electron microscopy of a hemagglutinin from Limulus polyphemus. J Mol Biol 32: 467–469

    Article  PubMed  CAS  Google Scholar 

  23. Finstad CL, Good RA, Litman GW (1974) The erythrocyte agglutinin from Limulus polyphemus hemolymph: Molecular structure and biological function. Ann N Y Acad Sci 234: 170–182

    Google Scholar 

  24. Fitzgerald SW, Ratcliffe NA (1982) Evidence for the presence of subpopulations of Arenicola marina coelomocytes identified by their selective response towards Gram+ve and Gram-ve bacteria. Dev Comp Immunol 6: 23–34

    Article  PubMed  CAS  Google Scholar 

  25. Fletcher TC, Cooper-Willis CA (1982) Cellular defense systems of the mollusca. In: Cohen N, Sigel MM (eds) The reticuloendothelial system. A comprehensive treatise. Plenum, New York, pp 141–166 (Phylogeny and ontogeny, vol 3 )

    Google Scholar 

  26. Foley DA, Cheng TC (1975) A quantitative study of phagocytosis by hemolymph cells of the pelecypods Crassostrea virginica and Mercenaria mercenaria. J Invertebr Pathol 25: 189–197

    Article  PubMed  CAS  Google Scholar 

  27. Form DM (1979) Isolation and characterization of a lectin from the hemolymph of a tunicate Halocynthia pyriformis.. Thesis, Yale University, Massachusets

    Google Scholar 

  28. Form DM, Warr GW, Marchalonis JJ (1979) Isolation and characterization of a lectin from the hemolymph of a tunicate, Halocynthia pyriformis. Fed Proc 38: 934–941

    Google Scholar 

  29. Fountain DW, Campbell BA (1984) A lectin isolate from mucus of Helix aspersa. Comp Biochem Physiol 77B: 419–425

    Google Scholar 

  30. Friedman FK, Beychok S (1979) Probes of subunit assembly and reconstitution pathways in multisubunit proteins. Annu Rev Biochem 48: 217–250

    Article  PubMed  CAS  Google Scholar 

  31. Fries CR (1984) Protein hemolymph factors and their roles in invertebrate defense mechanisms: A review. In: Cheng TC (ed) Invertebrate blood, cells and serum factors. Plenum, New York, pp 49–109 (Comparative pathobiology, vol 6 )

    Google Scholar 

  32. George SG, Pirie BJS, Cheyne AR, Coombs TL, Grant PT (1978) Detoxification of metals by marine bivalves: An ultrastructural study of the compartmentation of copper and zinc in the oyster Ostrea edulis. Marine Biol 45: 147–156

    Google Scholar 

  33. Gilbride KJ, Pistole TG (1981) The presence of copper in a purified lectin from Limuluspoly- phemus: Possible new role for hemocyanin. Dev Comp Immunol 5: 347–352

    Google Scholar 

  34. Gold ER, Balding P (1975) (eds) Receptor-specific proteins: Plant and animal lectins. Excerpta Medica, Amsterdam

    Google Scholar 

  35. Goldstein I J, Hayes CE (1978) The lectins: Carbohydrate-binding proteins of plants and ani-mals. Adv Carbohydr Chem Biochem 35: 127–340

    Google Scholar 

  36. Hall JL, Rowlands DT (1974a) Heterogeneity of lobster agglutinins I. Purification and physiochemical characterization. Biochemistry 13: 821–827

    Google Scholar 

  37. Hall JL, Rowlands DT (1974b) Heterogeneity of lobster agglutinins II. Specificity of agglutinin-erythrocyte binding. Biochemistry 13: 828–832

    Google Scholar 

  38. Hammarström S (1974) Structure, specificity, binding properties, and some biological activities of a blood group A-reactive hemagglutinin from the snail Helix pomatia. Ann NY Acad Sei 234: 183–197

    Article  Google Scholar 

  39. Hammarström S, Westöö A, Björk I (1972) Subunit structure of Helix pomatia A hemagglutinin. Scand J Immunol 1: 295–309

    Article  PubMed  Google Scholar 

  40. Hardy SW, Fletcher TC, Olafsen JA (1977) Aspects of cellular and humoral defence mechanisms in the Pacific oyster, Crassostrea gigas. In: Solomon JB, Horton JD (eds) Developmental immunobiology. Elsevier/North Holland, Amsterdam, pp 59–66

    Google Scholar 

  41. Hardy SW, Grant PT, Fletcher TC (1977) A hemagglutinin in the tissue fluid of the Pacific oyster, Crassostrea gigas, with specificity for sialic acid residues in glycoproteins. Experientia (Basel) 33: 767–768

    Google Scholar 

  42. Harm H, Renwrantz L (1980) The inhibition of serum opsonins by a carbohydrate and the opsonizing effect of purified agglutinin on the clearance of nonself particles from the circulation of Helix pomatia. J Invertebr Pathol 36: 64–70

    Article  Google Scholar 

  43. Ingram GA, East J, Molyneux DH (1983) Agglutinins of Trypanosoma, Leishmania and Crithidia in insect hemolymph. Dev Comp Immunol 7: 649–652

    Google Scholar 

  44. Jenkin CR, Hardy D (1975) Recognition factors of the crayfish and the generation of diversity. In: Hildeman WH, Benedict A A (eds) Immunologic phylogeny. Plenum, New York, pp 55–65

    Google Scholar 

  45. Kehoe JM, Kaplan R, Li SSL (1979) Functional implications of the covalent structure of Limulin: an overview. In: Cohen E (ed) Biomedical applications of the horseshoe crab (Limulidae). Liss, New York, pp 617–623

    Google Scholar 

  46. Komano H, Mizuno D, Natori S (1980) Purification of a lectin induced in the hemolymph of Sarcophaga peregrina larvae on injury. J Biol Chem 255: 2919–2924

    PubMed  CAS  Google Scholar 

  47. Komano H, Mizuno D, Natori S (1981) A possible mechanism of induction of insect lectin. J Biol Chem 256: 7087–7089

    PubMed  CAS  Google Scholar 

  48. Lackie AM (1980) Invertebrate immunity. Parasitology 80: 393–412

    Article  PubMed  CAS  Google Scholar 

  49. Lackie AM (1981) Immune recognition in insects. Dev Comp Immunol 5: 191–204

    Article  PubMed  CAS  Google Scholar 

  50. Marchalonis JJ, Edelman GM (1968) Isolation and characterisation of a haemagglutinin from Limulus polyphemm. J Mol Biol 32: 453–465

    Article  CAS  Google Scholar 

  51. McDade JE, Tripp MR (1967) Mechanism of agglutination of red blood cells by oyster hemolymph. J Invertebr Pathol 9: 523–530

    Article  PubMed  CAS  Google Scholar 

  52. McKay D, Jenkin CR (1970) Immunity in the invertebrates: The role of serum factors in the phagocytosis of erythrocytes by haemocytes of the fresh water crayfish ( Parachaeraps bicari- natus ). Aust J Exp Biol Med Sci 48: 139–150

    Google Scholar 

  53. Miller RL, Collawn JR Jr, Fish WW (1982) Purification and macromolocular properties of a sialic acid-specific lectin from the slug Limax flavus. J Biol Chem 257: 7574–7580

    PubMed  CAS  Google Scholar 

  54. Müller WEG, Zahn RK, Kurelec B, Lucu C, Müller I, Uhlenbruch G (1981) Lectin, a possible basis for symbiosis between bacteria and sponges. J Bacteriol 145: 548–558

    PubMed  Google Scholar 

  55. Nicholson GL (1974) The interactions of lectins with animal cell surfaces. Int Rev Cytol 39: 89–190

    Article  Google Scholar 

  56. Parish CR (1977) Simple model for self-non-self-discrimination in invertebrates. Nature 267: 711–713

    Article  PubMed  CAS  Google Scholar 

  57. Pauley GB (1974) Physicochemical properties of the natural agglutinins of some molluscs and crustaceans. Ann N Y Acad Sci 234: 145–160

    Article  PubMed  CAS  Google Scholar 

  58. Pauley GB, Granger GA, Krassner SM (1971) Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia californica. J Invertebr Pathol 18: 207–218

    Google Scholar 

  59. Pauley GB, Krassner SM, Chapman FA (1971b) Bacterial clearance in the California sea hare, Aplysia californica. J Invertebr Pathol 18: 227–239

    Google Scholar 

  60. Pemberton RT (1974) Anti-A and anti-B of gastropods origin. Ann NY Acad Sci 234: 95–121

    Article  PubMed  CAS  Google Scholar 

  61. Pereira MEA, Kabat EA (1979) Immunochemical studies on lectins and their application to the fractionation of blood group substances and cells. Crit Rev Immunol 1: 33–78

    CAS  Google Scholar 

  62. Pistole TG (1978) Broad-spectrum bacterial agglutinating activity in the serum of the horseshoe crab Limulus polyphemus. Dev Comp Immunol 2: 65–76

    Article  PubMed  CAS  Google Scholar 

  63. Prowse RH, Tait NN (1969) In vitro phagocytosis of amoebocytes from the hemolymph of Helix aspersa (Müller) I. Evidence for opsonic factor(s) in serum. Immunology 17: 437–443

    Google Scholar 

  64. Ratcliffe NA, Rowley AF (1984) Opsonic activity of insect hemolymph. In: Cheng TC (ed) Invertebrate blood, cells and serum factors. Plenum, New York, pp 187–204 (Comparative pathobiology, vol 6 )

    Google Scholar 

  65. Renwrantz L (1983) Involvement of agglutinins (lectins) in invertebrate defense reactions: The immunobiological importance of carbohydrate-specific binding molecules. Dev Comp Immunol: 603–608

    Google Scholar 

  66. Renwrantz L, Mohr W (1978) Opsonizing effect of serum and albumin gland extract on the elimination of human erythrocytes from the circulation of Helix pomatia. J Invertebr Pathol 31: 164–170

    Article  PubMed  CAS  Google Scholar 

  67. Renwrantz L, Stahmer A (1983) Opsonizing properties of an isolated hemolymph agglutinin and demonstration of lectin-like recognition molecules at the surface of hemocytes from Mytilus edulis. J Comp Physiol 149: 535–546

    Article  CAS  Google Scholar 

  68. Renwrantz L, Schäncke W,Harm H, Erl H, Liebsch H, Gercken J (1981) Discriminative abili-ty and function of the immunobiological recognition system of the snail Helix pomatia. J Comp Physiol 141: 477–488

    CAS  Google Scholar 

  69. Robey FA, Liu T-Y (1981) Limulin: A C-reactive protein from Limulus polyphemus. J Biol Chem 256: 969–975

    Google Scholar 

  70. Robohm RA (1984) In vitro phagocytosis by molluscan hemocytes: A survey and critique of methods. In: Cheng TC (ed) Invertebrate blood, cells and serum factors. Plenum, New York, pp 147–172 (Comparative Pathobiology, vol 6 )

    Google Scholar 

  71. Roche AC, Monsigny M (1974) Purification and properties of limulin: A lectin (agglutinin) from haemolymph of Limulus polyphemus. Biochim Biophys Acta 371: 242–254

    Google Scholar 

  72. Rostam-Abadi H, Pistole TG (1982) Lipopolysaccharide-binding lectin from the horseshoe crab, Limulus polyphemus, with specificity for 2-keto-3-deoxyoctonate ( KDO ). Dev Comp Immunol 6: 209–281

    Google Scholar 

  73. Rowley AF, Ratcliffe NA (1980) Insect erythrocyte agglutinins. In vitro opsonization exper-iments with Clitumnus extradentatus and Periplaneta americana hemocytes. Immunology 40: 483–492

    Google Scholar 

  74. Schluter SF, Ey PL, Keough DR, Jenkin CR (1981) Identification of two carbohydrate-specific erythrocyte agglutinins in the haemolymph of the protochordate Botrylloides leachii. Immunology 42: 241–250

    PubMed  CAS  Google Scholar 

  75. Scott HT (1971) Recognition of foreignness in invertebrates II. In vitro studies of cockroach phagocytic hemocytes. Immunology 21: 817–828

    Google Scholar 

  76. Sharon N (1979) Possible functions of lectins in microorganisms, plants and animals. Glycocon Res, Proc 4th Int Symp Glycocon 1: 459–491

    CAS  Google Scholar 

  77. Sharon N (1984) Surface carbohydrates and surface lectins are recognition determinants in phagocytosis. Immunol Today (Amst) 5: 143–147

    Article  CAS  Google Scholar 

  78. Sharon N, Lis H (1972) Lectins: Cell-agglutinating and sugar specific proteins. Science 177: 949–959

    Google Scholar 

  79. Shimizu S, Ito M, Niwa M (1977) Lectins in the hemolymph of the Japanese horseshoe crab Tachypleus tridentatus. Biochim Biophys Acta 500: 71–79

    PubMed  CAS  Google Scholar 

  80. Shishikura F, Sekiguchi K (1983) Agglutinins in the horseshoe crab hemolymph: Purification of a potent agglutinin of horse erythrocytes from the hemolymph of Tachypleus tridentatus, the Japanese horseshoe crab. J Biochem (Tokyo) 93: 1539–1546

    Google Scholar 

  81. Simkiss K, Mason AZ (1983) Metal ions: Metabolic and toxic effects. In: Hochachka PW (ed) The mollusca, vol 2. Environmental biochemistry and physiology. Academic Press, New York, pp 101–164

    Google Scholar 

  82. Sminia T, Winsemius AA, van der Knaap WPW (1981) Recognition of foreignness by blood cells of the freshwater snail Lymnaea stagnalist with special reference to the role and structure of the cell coat. J Invertebr Pathol 38: 175–183

    Article  Google Scholar 

  83. Tatsumi M, Arai Y, Itoh T (1982) Purification and characterization of a lectin from the shell-fish Saxidomus purpuratus. J Biochem (Tokyo) 91: 1139–1146

    CAS  Google Scholar 

  84. Tripp MR (1966) Haemagglutinin in the blood of the oyster Crassostrea virginica. J Invertebr Pathol 8: 478–484

    Article  PubMed  CAS  Google Scholar 

  85. Tripp MR (1970) Defense mechanisms of molluscs. J Reticuloendothel Soc 7: 173–182

    PubMed  CAS  Google Scholar 

  86. Tripp MR (1974) Oyster hemolymph proteins. Ann NY Acad Sci 234: 18–22

    Article  PubMed  CAS  Google Scholar 

  87. Tyson CJ, Jenkin DR (1974) Phagocytosis of bacteria in vitro by haemocytes from the crayfish CParachaeraps bicarinatus). Aust J Exp Biol Med Sci 52: 341–348

    Article  PubMed  CAS  Google Scholar 

  88. Uhlenbruck G, Pardoe GI, Prokop O, Ishiyama I (1972) The serological specificity of snail agglutinins (protectins). Anim Blood Groups Biochem Genet 3: 125–139

    Article  CAS  Google Scholar 

  89. Umetsu K, Kosaka S, Suzuki T (1984) Purification and characterization of a lectin from the beetle Allomyrina dichotoma. J Biochem (Tokyo) 95: 239–245

    CAS  Google Scholar 

  90. van der Knaap WPW, Boerrigter-Barendsen LH, van den Hoeven DSP, Sminia T (1981) Immunocytochemical demonstration of a humoral defense factor in blood cells (amoebocytes) of the pond snail, Lymnaea stagnalis. Cell Tissue Res 219: 291–296

    Google Scholar 

  91. van Oss CJ, Gillman CF (1972) Phagocytosis as a surface phenomenon II. Contact angles and phagocytosis of encapsulated bacteria before and after opsonization by specific antiserum and complement. J Reticuloendothel Soc 12: 497–502

    Google Scholar 

  92. Vasta GR, Cohen E (1984) Sialic acid-binding lectins in the “whip scorpion” Mastigoproctus giganteus serum. J Invertebr Pathol 43: 333–342

    Article  PubMed  CAS  Google Scholar 

  93. Vasta GR, Cohen E (1984) Characterization of the carbohydrate specificity of serum lectins from the scorpion Hadrurus arizonensis Stahnke. Comp Biochem Physiol 77B: 721–727

    Google Scholar 

  94. Vasta GR, Cohen E (1984) Serum lectins from the scorpion Vaejovis spinigerus Wood bind sialic acids. Experientia (Basel) 40: 485–487

    Article  CAS  Google Scholar 

  95. Vasta GR, Cohen E (1984) Humoral lectins in the scorpion Vaejovis confuscius: A serological characterization. J Invertebr Pathol 43: 226–233

    Google Scholar 

  96. Vasta GR, Sullivan JT, Cheng TC, Marchalonis JJ, Warr GW (1982) A cell membrane-associated lectin of the oyster hemocyte. J Invertebr Pathol 40: 367–377

    Article  CAS  Google Scholar 

  97. Vasta GR, Warr GW, Marchalonis JJ (1982) Tunicate lectins: Distribution and specificity. Comp Biochem Physiol 73: 887–900

    Google Scholar 

  98. Vretblad P, Hjorth R, LååsT (1979) The isolectins of Helix pomatia. Separation by isoelectric focusing and preliminary characterization. Biochim Biophys Acta 579: 52–61

    Google Scholar 

  99. Yeaton RW (1981) Invertebrate lectins I. Occurrence. Dev Comp Immunol 5: 391 - 402

    CAS  Google Scholar 

  100. Yeaton RW (1981) Invertebrate lectins II. Diversity of specificity, biological synthesis and function in recognition. Dev Comp Immunol 5: 535–545

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olafsen, J.A. (1986). Invertebrate Lectins: Biochemical Heterogeneity as a Possible Key to Their Biological Function. In: Brehélin, M. (eds) Immunity in Invertebrates. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70768-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70768-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70770-4

  • Online ISBN: 978-3-642-70768-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics