Advertisement

Evolution of Histoincompatibility

  • E. L. Cooper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Earthworms have been known in modern times since Darwin, but in relation to improvement of soil [23]. Comparative immunologists interested in evolution of immunity have now rediscovered the earthworm [11,12,29,31,40,43,71] to search for origins of immune mechanisms [13,14], as did Metchnikoffs crucial work and that of other early comparative immunologists [46], since certain invertebrates, including earthworms, may possess cells from which higher immune systems evolved. The immune system of animals in the phylum, Annelida, 9e.g., the eartworm) is housed in the coelom, which contains coelomic fluid, and coelomocytes, the worms’s leukocytes. Coelomocytes, like leukocytes, are sensitive to infections and are active in defense reations ranging from phagocytesis to the more complex cellular responses that govern the mechanisms of tissue graft rejection and those that ensure the synthesis of humoral defenses substances. To reaction againts foreign material, coelomocytes surely possess cellular recognition units or receptors, whose nature is still unknown. The receptors for antigents in mammals are antibodies, but antibodies or immunoglobulins have not been found in any invertebrates. Such species must, therefore, have different and perhaps simpler, primordial receptor units for antigen which may prove to be members of the Ig superfamily. The fundamental problem in studies of invertebrates in general using the earthworm’s immune system as an example, is to explain the process of receptor-mediated recognition of antigen.

Keywords

Major Histocompatibility Complex Adoptive Transfer Graft Rejection Coelomic Fluid Transplantation Immunity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids II. Adoptive transfer of the xenograft reaction. Immunology 21: 81–86Google Scholar
  2. 2.
    Berggard I, Bearn AG (1968) Isolation and properties of a low molecular weight ß2 -globulin occurring in human biological fluids. J Biol Chem 243: 4095–4103PubMedGoogle Scholar
  3. 3.
    Campbell DG, Gagnon J, Reid KBM, Williams AF (1981) Rat brain Thy-1 glycoprotein. The amino acid sequence, disulphide bonds and an unusual hydrophobic region. Biochem J 195: 15–30Google Scholar
  4. 4.
    Cohen FE, Novotny J, Sternberg MJE, Campbell DG, Williams AF (1981) Analysis of structural similarities between brain Thy-1 antigen and immunoglobulin domains. Evidence of an evolutionary relationship and a hypothesis for its functional significance. Biochem J 195: 31–40Google Scholar
  5. 5.
    Cohen N, Collins NH (1977) Major and minor histocompatibility systems of ectothermic vertebrates. In: Götze D (ed) The major histocompatibility system in man and animals. Springer, Berlin Heidelberg New York, p 313Google Scholar
  6. 6.
    Cooper EL (1965a) Rejection of body wall xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Am Zool 5: 169Google Scholar
  7. 7.
    Cooper EL (1965b) A method of tissue grafting in the earthworm, Lumbricus terrestris. Am Zool 5: 233Google Scholar
  8. 8.
    Cooper EL (1968) Transplantation immunity in annelids I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation (Baltimore) 6: 322–337CrossRefGoogle Scholar
  9. 9.
    Cooper EL (1969a) Chronic allograft rejection in Lumbricus terrestris. J Exp Zool 171: 69–73PubMedCrossRefGoogle Scholar
  10. 10.
    Cooper EL (1969b) Specific tissue graft rejection in earthworms. Science 166: 1414–1415PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper EL (1974) (ed) Contemporary topics in immunobiology, vol 4. Plenum, New YorkGoogle Scholar
  12. 12.
    Cooper EL (1976) Comparative immunology. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  13. 13.
    Cooper EL (1977a) In: Solomon JB, Horton JD (eds) Developmental immunobiology. Elsevier, North-Holland, AmsterdamGoogle Scholar
  14. 14.
    Cooper EL (1977b) What is the origin and function of the immune system? Trends Biochem Sci 2: 130CrossRefGoogle Scholar
  15. 15.
    Cooper EL (1977c) Phylogenetic aspects of transplantation. In: Masshoff JW (ed) Handbuch der Allgemeinen Pathologie, vol 1/8. Transplantation. Springer, Berlin Heidelberg New York, p 139Google Scholar
  16. 16.
    Cooper EL (1980) Cell mediated memory in invertebrates. In: Manning M J (ed) Phylogeny of immunological memory. Elsevier/North Holland Biomedical, New YorkGoogle Scholar
  17. 17.
    Cooper EL (1985) Leukocyte activity during earthworm inflammatory responses. Tissue Reactions (in press)Google Scholar
  18. 18.
    Cooper EL, Roch P (1984) Earthworm leukocyte interactions during early stages of graft rejection. J Exp Zool 232: 67–72PubMedCrossRefGoogle Scholar
  19. 19.
    Cooper EL, Roch P (1985) Second-set allograft responses in the earthworm Lumbricus terrestris: kinetics and characteristics. Transplantation (Baltimore) (in press)Google Scholar
  20. 20.
    Cooper EL, Rubilotta L (1969) Allograft rejection in Eisenia Foetida. Transplantation (Baltimore) 8: 220–223CrossRefGoogle Scholar
  21. 21.
    Cooper EL, Winger LA (1975) Transplantation immunity in annelids III. Effects of temperature on xenograft rejection in earthworms. Am Zool 15: 7–11Google Scholar
  22. 22.
    Cooper EL, Stein EA, Wright RK, Klempau AE (1984) Phylogenetic distribution of a Thy-1- like determinant. Am Zool 23: 901Google Scholar
  23. 23.
    Darwin C (1900) The formation of vegetable mould through the action of worms with observations on their habits. Appleton, New York, p 326Google Scholar
  24. 24.
    DuPasquier L (1976) Phylogenesis of vertebrate immune system. In: Melchers F, Rajewski R (eds) The immune system. Springer, Berlin Heidelberg New York, p 101Google Scholar
  25. 25.
    Duprat P (1964) Mise en evidence de réactions immunitaires dans les homogreffes de paroi du corps chez le lombricien Eisenia foetida typica. C R Acad Sci Paris Ser C 259: 4177–4179Google Scholar
  26. 26.
    Duprat P (1967) Etude de la prise et du maintien d’un greffon de paroi du corps chez le lombricien Eisenia foetida. Ann Inst Pasteur 113: 867–881Google Scholar
  27. 27.
    Duprat P (1970) Specific allograft reactions in Eisenia foetida. Transplant Proc 2: 222–225Google Scholar
  28. 28.
    Garland JM (1978) The T-cell paradigm. A philosophical view of immunology. Dev Comp Immunol 2: 39–44PubMedCrossRefGoogle Scholar
  29. 29.
    Gershwin ME, Cooper EL (1978) (eds) Animal models of comparative and developmental aspects of immunity and disease. Pergamon, New YorkGoogle Scholar
  30. 30.
    Hahn GS, Hamburger RN (1981) Evolutionary relationship of thymopoietin to immunoglobulins and cellular recognition molecules. J Immunol 126: 459–462PubMedGoogle Scholar
  31. 31.
    Hildemann WH, Benedict AA (1975) (eds) Advances in experimental medicine and biology, vol 64. Plenum, New YorkGoogle Scholar
  32. 32.
    Hostetter K, Cooper EL (1972) Coelomocytes as effector cells in earthworm immunity. Immunol Commun 1: 155–183PubMedGoogle Scholar
  33. 33.
    Hostetter RK, Cooper EL (1973) Cellular anamnesis in earthworms. Cell Immunol 9: 384–392PubMedCrossRefGoogle Scholar
  34. 34.
    Kaufman JF, Strominger JL (1982) HLA-DR light chain has a polymorphic N-terminal region and a conserved immunoglobulin-like-C-terminal region. Nature 297: 694–697PubMedCrossRefGoogle Scholar
  35. 35.
    Klein J (1977) Evolution and function of the Major Histocompatibility System: facts and speculations. In: Götze D (ed) The Major Histocompatibility System in man and animals. Springer, Berlin Heidelberg New York, p 340Google Scholar
  36. 36.
    Korman AJ, Auffray C, Schamboeck A, Strominger JL (1982) The amino acid sequence and gene organization of the heavy chain of the HLA-DR antigen: homology to immunoglobulin. Proc Natl Acad Sci USA 79: 6013–6017PubMedCrossRefGoogle Scholar
  37. 37.
    Lemmi CAE (1982) Characteristics of primitive leukocytes equipped with receptors for xenogeneic grafts. In: Cooper EL, Brazier MAB (eds) Developmental immunology: clinical problems and aging. Academic Press, New York, pp 115–122Google Scholar
  38. 38.
    Lemmi CAE, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol Suppl 1, 5: 73–80CrossRefGoogle Scholar
  39. 39.
    Linthicum DS, Marks DH, Stein EA, Cooper EL (1977) Graft rejection in earthworms: an electron microscopic study. Eur J Immunol 7: 871–876PubMedCrossRefGoogle Scholar
  40. 40.
    Manning M J, Turner RJ (1976) Comparative immunobiology. Halstead WileyGoogle Scholar
  41. 41.
    Mansour MH, Cooper EL (1984) Serological and partial molecular characterization of a Thy-1 homolog in tunicates. Eur J Immunol 14: 1031–1039PubMedCrossRefGoogle Scholar
  42. 42.
    Mansour MH, DeLange R, Cooper EL (1985) Isolation, purification and amino acid composition of the tunicate hemocyte Thy-1 homolog. J Biol Chem 260: 2681–2686PubMedGoogle Scholar
  43. 43.
    Marchalonis J J (1976) (ed) Comparative immunology. Blackwell Scientific, Oxford, EnglandGoogle Scholar
  44. 44.
    Marchalonis J J (1977) Immunity in evolution. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  45. 45.
    Marks DH, Stein EA, Cooper EL (1979) Chemotactic attraction of Lumbricus terrestris coelomocytes to foreign tissue. Dev Comp Immunol 3: 277–285PubMedCrossRefGoogle Scholar
  46. 46.
    Metchinkoff E (1892) Leçons sur la pathologie comparée de l’inflammation, Masson, ParisGoogle Scholar
  47. 47.
    Moriuchi T, Chang H-C, Denome R, Silver J (1983) Thy-1 cDNA sequence suggests a novel regulatory mechanism. Nature 301: 80–82PubMedCrossRefGoogle Scholar
  48. 48.
    Nakamuro K, Tanigaki N, Pressman D (1973) Multiple common properties of human ß2 -microglobulin and the common portion fragment derived from HL-A antigen molecules. Proc Natl Acad Sci USA 70: 2863–2865PubMedCrossRefGoogle Scholar
  49. 49.
    Nisonoff A, Hopper JE, Spring SB (1975) The antibody molecule. Academic Press, New YorkGoogle Scholar
  50. 50.
    Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New YorkGoogle Scholar
  51. 51.
    Parry MJ (1978) Survival of body wall autografts, allografts and xenografts in the earthworm Eisenia foetida. J Invertebr Pathol 31: 383–388PubMedCrossRefGoogle Scholar
  52. 52.
    Peterson PA, Cunningham BA, Berggard I, Edelman GM (1972) β2-Microglobulin. A free immunoglobulin domain. Proc Natl Acad Sci USA 69: 1697–1701Google Scholar
  53. 53.
    Roch P, Valembois P, DuPasquier L (1975) Response of earthworm leukocytes to concanavalin A and transplantation antigens. Adv Exp Med Biol 64: 45–54PubMedGoogle Scholar
  54. 54.
    Roch PG, Cooper EL, Eskinazi DP (1983) A ß2 -microglobulin-like molecule on earthworm leukocyte membranes. Eur J Immunol 13: 1037–1042PubMedCrossRefGoogle Scholar
  55. 55.
    Schreffler DC, David CS, Passmore HC, Klein J (1971) Genetic organization and evolution of the mouse H-2 region: a duplication model. Transplant Proc 3: 176–179Google Scholar
  56. 56.
    Shalev A, Greenberg AH, Lögdberg L, Bjorck L (1981) ß2 -microglobulin-like molecules in low vertebrates and invertebrates. J Immunol 127: 1186–1191PubMedGoogle Scholar
  57. 57.
    Smithies O, Poulik MD (1972) Initiation of protein synthesis at an unusual position in an immunoglobulin gene. Science 175: 187–189PubMedCrossRefGoogle Scholar
  58. 58.
    Stein EA, Cooper EL (1981) The role of opsonins in phagocytosis by coelomocytes of the earthworm Lumbricus terrestris. Dev Comp Immunol 5: 415–425PubMedGoogle Scholar
  59. 59.
    Stein EA, Wojdani A, Cooper EL (1982) Agglutinins in the earthworm Lumbricus terrestris: naturally occurring and induced. Dev Comp Immunol 6: 513–564Google Scholar
  60. 60.
    Valembois P (1963) Etude anatomique de l’évolution de greffons hétéroplastiques de paroi du corps chez quelques lombriciens. C R Acad Sci Paris Ser D 257: 3227–3228Google Scholar
  61. 61.
    Valembois P (1968) Libération de phosphatase acide dans les cellules musculaires d’un greffon de paroi du corps chez un lombricien. J Microsc 7: 61aGoogle Scholar
  62. 62.
    Valembois P (1970) Etude d’une hétérogreffe de paroi du corps chez les lombriciens. Thesis, University of Bordeaux, Talence, FranceGoogle Scholar
  63. 63.
    Valembois P (1971) Rôle des leucocytes dans l’acquisition d’une immunité antigreffe spéci-fique chez les lombriciens. Arch Zool Exp Gen 112: 97–103Google Scholar
  64. 64.
    Valembois P (1974) Cellular aspects of graft rejection in earthworms and some other metazoa. In: Cooper EL (ed) Contemporary topics in immunobiology, vol 4. Plenum, New York, p 121Google Scholar
  65. 65.
    Valembois P, Roch P (1977) Identification par autoradiographie des leucocytes stimulés à la suite de plaies ou de greffes chez un ver de terre. Biol Cell 28: 81–82Google Scholar
  66. 66.
    Warr GH (1978) On T-cells in invertebrates. Dev Comp Immunol 2: 555–558PubMedCrossRefGoogle Scholar
  67. 67.
    Whilmart C, Urbain J (1976) Common origin and evolution of variable and constant regions immunoglobulins. J Immunogenet (Oxf) 3: 1–14CrossRefGoogle Scholar
  68. 68.
    Williams AF, Gagnon J (1982) Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science 216: 696–703PubMedCrossRefGoogle Scholar
  69. 69.
    Williams AF, Barclay AN, Letarte-Muirhead M, Morris RJ (1976) Rat Thy-1 antigens from thymus and brain: their tissue distribution, purification and chemical composition. Cold Spring Harbor Symp Quant Biol 41: 51–62Google Scholar
  70. 70.
    Wojdani A, Stein EA, Lemmi CA, Cooper EL (1982) Agglutinins and proteins in the earthworm Lumbricus terrestris, before and after injection of erythrocytes, carbohydrates and other material. Dev Comp Immunol 6: 513–624Google Scholar
  71. 71.
    Wright RK, Cooper EL (1976) Phylogeny of thymus and bone-marrow-bursa cells. North-Holland, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • E. L. Cooper
    • 1
  1. 1.Department of Anatomy, Center for Health SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations