Influence of Subminimal Inhibitory Concentrations of Antibiotics on Antigen Expression and Metabolic Activity of Salmonella Species

  • G. Gillissen
  • B. Melzer
Conference paper


Subminimal inhibitory concentrations (subMICs) of antibiotics may induce changes in bacterial morphology, ultrastructure, biochemistry and in multiplication rate [15,19,21,22,23,26,31,36]. SubMICs of antibiotics may also increase susceptibility to phagocytosis and intracellular killing [8,9,30], or affect the ability of bacteria to adhere to epithelial cells [1,34]. Considering that the morphological and structural changes produced by subMICs of antibiotics are different from those induced by ≧ MICs, Lorian [19] postulated that the biochemical changes responsible for them must also be significantly different. It should, therefore, be expected that bacteria exposed to subMICs of antibiotics show also alterations in antigen expression with changes in their pathogenicity and the related immune response.


Antigen Expression Antimicrob Agent Acid Phosphatase Activity Subinhibitory Concentration Penicillanic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkan ML, Beachey EH (1978) Excretion of lipoteichoic acid by group A streptococci. Influence of penicillin on excretion and loss of ability to adhere to human oral mucosal cells. J Clin Invest. 61: 671–677PubMedCrossRefGoogle Scholar
  2. 2.
    Blumberg PM, Strominger JL (1971) Inactivation of d-alanine carboxypeptidase by penicillins and cephalosporins is not lethal in Bacillus subtilis. Proc Natl Acad Sci USA 68: 2814–2817PubMedCrossRefGoogle Scholar
  3. 3.
    Braude AI, Davis CE, Fierer J (eds) (1981) Medical Microbiology and infectious diseases. W.B. Saunders Company, Philadelphia, London, Toronto, Mexico City, Sydney, TokyoGoogle Scholar
  4. 4.
    Brock TD (1963) Effect of antibiotics and inhibitors on M protein synthesis. J Bacteriol 85: 527–531PubMedGoogle Scholar
  5. 5.
    Cowan ST (1974) Manual for the identification of medical bacteria. Cambridge University Press (2nd edition)Google Scholar
  6. 6.
    Ferne M, Schlossberg M, Michel J (1984) Elaboration d’anticorps chez le lapin après vaccination par Streptococcus pyogenes cultivé en présence de concentrations subinhibitrices d’érythromycine. Pathol Biol 32: 369–371PubMedGoogle Scholar
  7. 7.
    Franklin TJ, Godfrey A (1965) Resistance of Escherichia coli to tetracyclines. Biochem J 94: 54–60PubMedGoogle Scholar
  8. 8.
    Friedman H, Warren HG (1974) Enhanced susceptibility of penicillin resistant staphylococci to phagocytosis after in vitro incubation with low doses of Nafcillin (38177). Proc Soc Exp Biol Med 146: 707 – 711PubMedGoogle Scholar
  9. 9.
    Friedman H, Warren HG (1976) Enhanced killing of cyclacillin-treated bacteria. Proc Soc Exp Biol Med 153: 301 - 304PubMedGoogle Scholar
  10. 10.
    Gale EF, Cundliffe E, Reynolds PE, Richmond MH, Waring MJ (eds) (1981) The molecular basis of antibiotic action. John Wiley & Sons, London, New York, Sidney, Toronto (2nd edition)Google Scholar
  11. 11.
    Gemmel CG (1982) Expression of virulence factors of bacteria when grown in the presence of subinhibitory concentrations of various antibiotics. Drug Exp Clin Res 8: 245–250Google Scholar
  12. 12.
    Ghatak S, Krishna Murti CR (1953) Enzyme inhibition studies in relation to drug action. IV. Action of certain antibiotics on alcaline phosphatase. J Sci Ind Research (Ind.) 12B: 160Google Scholar
  13. 13.
    Gillissen G, Ruda M (1958) Die Beeinflussung der Phosphatasen von M pyogenes var. aureus durch Penicillin und Neomycin. Zeitschr f Hygiene 144: 401–406CrossRefGoogle Scholar
  14. 14.
    Gottlieb D, Shaw PD (eds) (1967) Antibiotics. I. Mechanism of action. Springer Verlag Berlin, Heidelberg, New YorkGoogle Scholar
  15. 15.
    Greenwood D, O’Grady F (1973) FL 1060: a new ß-lactam antibiotic with novel properties. J Clin Pathol 26: 1 - 6PubMedCrossRefGoogle Scholar
  16. 16.
    Hallmann L (1955) Bakteriologie und Serologie. Georg Thieme Verlag, StuttgartGoogle Scholar
  17. 17.
    Kaplan L, Anthony BF, Chapman SS, Ayonb EM, Wannamaker LW (1970) The influence of the site of infection on the immune response to group A streptococci. J Clin Invest 49: 1405–1414PubMedCrossRefGoogle Scholar
  18. 18.
    Lorian V (1975) Some effects of subinhibitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob Agents Chemother 7: 864–870PubMedGoogle Scholar
  19. 19.
    Lorian V (1980) Effects of subminimum inhibitory concentrations of antibiotics on bacteria. In: Lorian V (ed) Antibiotics in Laboratory Medicine. Williams & Wilkins, Baltimore/London, pp 342–408Google Scholar
  20. 20.
    Lorian V, Atkinson B (eds) (1974) Agglutination changes of enterobacteria exposed to ampicillin. Abstracts. Annual Meeting of the American Society for Microbiology, Chicago, p 129Google Scholar
  21. 21.
    Lorian V, Atkinson B (1975) Abnormal forms of bacteria produced by antibiotics. Am J Clin Pathol 64: 678– 688PubMedGoogle Scholar
  22. 22.
    Lorian V, Atkinson B (1976) Effects of subinhibitory concentrations of fosfomycin on bacteria. G Ital Chemioter 23: 65–74Google Scholar
  23. 23.
    Lorian V, Atkinson B (1977) Comparison of the effects of mecillinam and 6-minopenicillanic acid on Proteus mirabilis, Escherichia coli and Staphylococcus aureus. Antimicrob Agents Chemother 11: 541–552PubMedGoogle Scholar
  24. 24.
    Lorian V, Atkinson B, Ewing W (1976) Agglutination with O sera of salmonella exposed to antibiotics. Am J Clin Pathol 66: 1004 - 1011PubMedGoogle Scholar
  25. 25.
    Markwell MAK, Hass SM, Bieber LL, Tolbert NE (1978) A modification of the lowry procedure to simplify protein determinations in membrane and lipoprotein samples. Anal Biochem 87: 206PubMedCrossRefGoogle Scholar
  26. 26.
    Melchior NH, Blom J, Tybring L, Birth-Andersen A (1973) Light and electron micros¬copy of the early response of Escherichia to a 6ß-amidinopenicillanic acid (FL 1060). Acta Pathol Microbiol Scand 81: 393–407Google Scholar
  27. 27.
    Michel J, Ferne M, Rotenberg M (1983) Effects de concentrations sub-inhibitrices d’antibiotiques sur la virulence de streptocoques hémolytiques du groupe A. Pathol Biol 31: 528–532PubMedGoogle Scholar
  28. 28.
    Mulli K, Uhlenbrook K, Ludwig L (1953) Zum Wirkungsmechanismus des Aureomycins. Arzneim Forsch 3: 559–561Google Scholar
  29. 29.
    Neu H (1976) Mecillinam, a novel penicillanic acid derivative with unusual activity against gram-negative bacteria. Antimicrob Agents Chemother 9: 793–799PubMedGoogle Scholar
  30. 30.
    Nishida M, Mine Y, Nonoyama S, Yokota Y (1976) Effect of antibiotics on the phagocytosis and killing of Pseudomonas aeruginosa by rabbit polymorphonuclear leukocytes. Chemotherapy 22: 203–210PubMedCrossRefGoogle Scholar
  31. 31.
    Rolinson GN (1977) Subinhibitory concentrations of antibiotics. J. Antimicrob. Chemother 3: 111–113PubMedCrossRefGoogle Scholar
  32. 32.
    Stapley EO, Hendlin D, Mata JM, Jackson M, Wallick H, Hernandez S, Mochales S, Currie SA, Miller RM (1969) Phosphomycin I discovery and in vitro biological characterization. Antimicrob Agents Chemother 1968: 284–290Google Scholar
  33. 33.
    Strominger JL (1969) Penicillin sensitive enzymatic reactions in bacterial cell wall synthesis. Harvey Lect 64: 179–213Google Scholar
  34. 34.
    Svanbord Eden C, Sandberg T, Ahlstedt K (1978) Decrease in adhesion of E. coli to human urinary tract epithelial cells in vitro by subinhibitory concentrations of ampicillin. Infection 6 (suppl. I): 121–124Google Scholar
  35. 35.
    Tanner J (1960) Contribution à l’étude de l’action des antibiotiques sur l’immunité. Action de la tetracycline sur les antigènes de S. typhi. Ann Inst Pasteur 98: 772Google Scholar
  36. 36.
    Tybring L, Melchior NH (1975) Mecillinam (FL 1060) a 6ß-amidinopenicillanic acid derivative: bacterial action and synergy in vitro. Antimicrob Agents Chemother 8: 271–276PubMedGoogle Scholar
  37. 37.
    Viano I, Martinetto P, Valtz A, Santiano M, Barbaro S (1979) Variability of immune response induced by bacteria treated with subminimal inhibitory concentrations of fosfomycin. Rev Infect Dis 1: 858–861PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • G. Gillissen
    • 1
  • B. Melzer
    • 1
  1. 1.Department of Medical Microbiology, Medical FacultyAachenGermany

Personalised recommendations