Skip to main content

Interaction of Aminoglycosides and Ciprofloxacin with Bacterial Membranes

  • Conference paper

Abstract

Alterations in outer membrane permeability caused by polycationic antibiotics (e.g. polymyxins) are caused by displacement of divalent cations by competition; on the other hand EDTA removes divalent cations by chelation and thus causes outer membrane perturbation [1]. A wide range of outer membrane permeabilisation events is mediated by polymyxin B: the uptake of hydrophobic fluorescent compounds and nitrocefin respectively is enhanced and rod like projections (i.e. formation of outer membrane blebs) is caused by polymyxin B (2–10). Furthermore polymyxins cause a release of soluble constituents from washed cells of P.aeruginosa; there was an optimum concentration of polymyxin for maximum release of cell constituents, higher concentrations inhibiting the release [11,12]. Interaction of polymyxin B with the divalent cation-binding sites on LPS and permeabilisation of the outer membranes of gram-negative bacteria is reversible upon addition of magnesium or potassium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hancock RE W (1984) Alterations in outer membrane permeability. Ann Rev Microbiol 38: 237–264

    Article  CAS  Google Scholar 

  2. Cerny G, Teuber M (1971) Differential release of periplasmic versus cytoplasmic enzymes from Escherichia coli B by Polymyxin B Arch Microbiol 78: 166–179

    Article  CAS  Google Scholar 

  3. Hancock RE W, Wong P G W (1984) Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob. Agents Chemother 26: 48–52

    CAS  Google Scholar 

  4. Newton B A (1954) Site of action of polymyxin B on Pseudomonas aeruginosa: antago¬nism by cations. J Gen Microbiol 10: 491–499

    PubMed  CAS  Google Scholar 

  5. Nicas TI, Hancock REW (1980) Outer membrane protein HI of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B, and gentamicin. J Bacteriol 143: 872–878

    PubMed  CAS  Google Scholar 

  6. Schindler M, Osborn MJ (1979) Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 18: 4 425–4 430

    Article  Google Scholar 

  7. Schindler PRG, Teuber M (1978) Ultrastructural study of Salmonella typhimurium treated with membrane active agents: specific reaction of dansylchloride with cell envelope components. J Bacteriol 135: 190–206

    Google Scholar 

  8. Gilleland HE, Murray RGE (1976) Ultrastructural study of polymyxin resistant isolates of Pseudomonas aeruginosa. J Bacteriol. 125: 267–281

    PubMed  CAS  Google Scholar 

  9. Schindler PRG, Teuber M (1975) Action of polymyxin B on bacterial membranes: morphological changes in the cytoplasm and in outer membrane of Salmonella typhimurium and Escherichia coli 13. Antimicrob Agents Chemother 8: 95–104

    PubMed  CAS  Google Scholar 

  10. Vaara M, Vaara T (1983) Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother 24: 114–122

    PubMed  CAS  Google Scholar 

  11. Newton B A (1953) The release of soluble constituents from washed cells of Pseudomonas aeruginosa by the action of polymyxin. J Gen Microbiol 9: 54–64

    PubMed  CAS  Google Scholar 

  12. Newton B A (1956) The properties and mode of action of polymyxins. Bacterial Rev 20: 14–27

    CAS  Google Scholar 

  13. Hancock REW, Raffle VJ, Nicas TI (1981) Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 19: 777–785

    PubMed  CAS  Google Scholar 

  14. Loh B, Grant C, Hancock REW (1984) Use of fluorescent probe 1-N-phenylnaphthyl- amine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 546–551

    PubMed  CAS  Google Scholar 

  15. Roth H, Amos H, Davis B D (1960) Purine nucleotide excretion by Escherichia coli in the presence of streptomycin. Biochem Biophys. Acta 37: 398–405

    Article  PubMed  CAS  Google Scholar 

  16. Anand N, Davis B D (1960) Damage by streptomycin to the cell membrane of Escherichia coli. Nature Lond 185: 22–23

    Article  PubMed  CAS  Google Scholar 

  17. Dubin DT, Davis BD (1961) The effect of streptomycin on potassium efflux in Escherichia coli. Biochem Biophys Acta 52: 400–402

    Article  PubMed  CAS  Google Scholar 

  18. Gregroy H, Umbreit WW (1961) Effect of streptomycin on nucleotide leakage in various strains of E.coli. Bact Proc 1961: 189

    Google Scholar 

  19. Tzagoloff H, Umbreit HH (1963) Influence of streptomycin on nucleotide excretion in Escherichia coli. J Bacteriol 85: 49–52

    PubMed  CAS  Google Scholar 

  20. Davis BD, Mingioli ES (1950) Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol 60: 17–28

    PubMed  CAS  Google Scholar 

  21. Perret C J (1954) Iodometric assay of penicillinase. Nature 174: 1 012 –1 013

    Article  PubMed  CAS  Google Scholar 

  22. Dalhoff A (1982) Interaction of mezlocillin and cefoxitin against Proteus morganii in the granuloma pouch model. Eur J Microbiol 1: 243–247

    Article  CAS  Google Scholar 

  23. Pardee AB, Jacob F, Monod I (1959) The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E.coli. J Mol Bol 1: 165–178

    Article  CAS  Google Scholar 

  24. Langdon RG (1966) Glucose-6-phosphate dehydrogenase from erythrocytes. In: Colowick SP, Kaplan ND (eds): Methods in enzymology Vol. 9: Academic Press, New York, pp 126–131

    Google Scholar 

  25. Dalhoff A (1983) Shift in serum sensitivity of in vivo grown Escherichia coli—a preliminary report. In: Keusch G, Waldström T (eds): Experimental bacterial and parasitic infections. Elsevier Science Publishing Co., Inc., New York, Amsterdam, Oxford, pp 317–323

    Google Scholar 

  26. Dalhoff, Frank G, Luckhaus G (1982) The granuloma pouch, an in vivo model for pharmacokinetic and chemotherapeutic investigations. I. Biochemical and histological characterization. Infection 10: 354–360

    Article  PubMed  CAS  Google Scholar 

  27. Dalhoff A, Frank G, Luckhaus G (1983) The granuloma pouch: an in vivo model for pharmacokinetic and chemotherapeutic investigations. II Microbiological characterization. Infection 11: 41–46

    Article  PubMed  CAS  Google Scholar 

  28. Höltje JV (1978) Streptomycin uptake via an inducible polyamine transport system in Escherichia coli. Eur J Biochem. 86: 345–351

    Article  PubMed  Google Scholar 

  29. Dalhoff A (1983) Transport of aminoglycosides in Escherichia coli. Zbl Bakt Hyg, I Abt Orig A 254: 379–387

    CAS  Google Scholar 

  30. Singh A, Ursic D, Davies J (1979) Phentoypic suppression and misreading in Saccharomyces cerevisiae. Nature (Lond) 277: 146–148

    Article  CAS  Google Scholar 

  31. Palmer E, Wilhelm J M (1978) Mistranslation in a eucaryotic organism. Cell 13: 329–334

    Article  PubMed  CAS  Google Scholar 

  32. Palmer E, Wilhelm JM, Sherman F (1979) Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature (Lond) 277: 148–150

    Article  CAS  Google Scholar 

  33. Voigt WH, Zeiler H J (1984) Influence of ciprofloxacin on the ultrastructure of grampositive and gramnegative bacteria. 24th Interscience conference on antimicrobial agents and chemotherapy, Washington, October 1984, Abstract No. 982

    Google Scholar 

  34. Cohen J, McConnell JS (1985) Endotoxin release from bacteria exposed to ciprofloxacin and other bactericidal antibiotics. 14th International Congress of Chemotherapy, Kyoto, June 1985, Abstract No. 553 - 10

    Google Scholar 

  35. Hancock R E W (1981) Aminoglycoside uptake and mode of action with specific reference to streptomycin and gentamicin. I. Antagonists and mutants. J Antimicrob Chemother 8: 249–276

    Article  PubMed  CAS  Google Scholar 

  36. Hancock REW (1981) Aminoglycoside uptake and mode of action—with special reference to streptomycin and gentamicin. II Effects of aminoglycosides on cells. J Antimicrob Chemother 8: 429–445

    Article  PubMed  CAS  Google Scholar 

  37. Brown MRW (1975) The role of cell envelope in resistance. In: Brown MRW (ed): Resistance of Pseudomonas aeruginosa. John Wiley and Sons, Inc., New York, pp 71–107

    Google Scholar 

  38. Bryan LE van den Elzen HM (1977) Effects of membrane energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother 12: 163–177

    PubMed  CAS  Google Scholar 

  39. Eagon R G, Hartle R J, Rake J B, Abdel-Sayed S (1982) Effect of dihydrostreptomycin on active transport in isolated bacterial membrane vesicles. Antimicrob Agents Chemother 21: 844–845

    PubMed  CAS  Google Scholar 

  40. Corrado AP, Prado W A, Pimenta de Morais I (1975) Competitive antagonism between calcium and aminoglycoside antibiotics in skeletal and smooth muscle: In: Rocha e Silva M, Suarez-Kurtz G (eds.): Concepts of membranes in regulation and excitation. Raven Press, New York, pp. 212–226

    Google Scholar 

  41. Lüllmann H, Vollmer B (1982) An interaction of aminoglycoside antibiotics with Ca binding to lipid monolayers and to biomembranes. Biochem Pharmacol 31: 3769–3773

    Article  PubMed  Google Scholar 

  42. Brasseur R, Laurent G, Ruysschaert JM, Tulkens P (1984) Interactions with negatively charged lipid layers. Biochemical and conformational studies. Biochem Pharmacol 33: 629–637

    Article  PubMed  CAS  Google Scholar 

  43. Tulkens P, Brasseur R, Laurent G, Ruysschaert JM, Claes PJ, Vanderhaeghe H (1984) Conformational and biochemical studies of aminoglycoside-phospholipid interactions, a tool for the design of lesser toxic aminoglycosides. 6th International Symposium on Future Trends in Chemotherapy, Tirrenia, May 1984, Abstract Vol p. 197

    Google Scholar 

  44. Khanamuryan RM, Badzhinyan S A (1981) Ototoxicity of some antibiotics and permeability of model membranes. Zh Ushum Nos Oorl Bolezn 3: 59–62

    Google Scholar 

  45. Lipsky J J, Lefkowith J, Lietman PS (1984) Cytoplasmic and membrane effects of aminoglycosides. A hypothesis for the mechanism of aminoglycoside toxicity. Kidney Dis 4: 261–271

    CAS  Google Scholar 

  46. Dalhoff A (1983) Studies on the action of aminoglycosides on bacterial membranes. Zbl Bakt Hyg I Abt Orig A 253: 427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalhoff, A. (1985). Interaction of Aminoglycosides and Ciprofloxacin with Bacterial Membranes. In: Adam, D., Hahn, H., Opferkuch, W. (eds) The Influence of Antibiotics on the Host-Parasite Relationship II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70748-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70748-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70750-6

  • Online ISBN: 978-3-642-70748-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics