Advertisement

The Origin and Meiotic Instability of a Polymorphic Repetitive Sequence PRI Family

  • R. Kominami
  • M. Muramatsu
  • K. Sudo
  • H. Yoshikura
  • H. Suzuki
  • K. Moriwaki
  • J. Hilgers
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 122)

Abstract

Genomic diversity within a given species has often been demonstrated by differences in electrophoretic mobilities of proteins and by DNA restriction site polymorphism (Giblet,1977; Arnheim and Southern, 1977; Jeffreys,1979). This is due to DNA sequence polymorphism. The genome size also seems to vary in different individuals, since the amount and distribution of centromeric heterochromatin, detected by chromosome banding techniques, vary in mice (Dev et al.,1973; Miller et al., 1976; Moriwaki and Minezawa, 1976; Yoshida and Kodama, 1983). A certain class of repetitive DNA is located in this chromosome region (Pardue and Gall, 1970; Jones, 1970). The polymorphic repetitive sequence PRI family (Kominami et al., 1983a) is of this type, because the copy number and fragment size of this family differ within mouse species and even in different inbred strains.

Keywords

Repetitive Sequence Space Region Synaptonemal Complex Centromeric Heterochromatin Unequal Crossover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnheim N. and Southern E.M. (1977) Heterogeneity of the ribosomal genes in mice and men. Cell, 11, 363–370.PubMedCrossRefGoogle Scholar
  2. Bernards A., Michels P.A.M., Lincke C.R. and Borst P.(1983) Growth of chromosome ends in multipling trypanosomes. Nature, 303, 592–597.PubMedCrossRefGoogle Scholar
  3. Dev V.G., Miller D.A. and Miller O.J. (1973) Chromosome markers in Mus musculus; strain differences in C-banding. Genetics, 75, 663–670.PubMedGoogle Scholar
  4. Giblet E.R.(1977) Genetic polymorphisms in human blood. Annu. Rev. Genet., 11, 13–28.CrossRefGoogle Scholar
  5. Hilkens J., Hilgers J., Demant P., Michalides R., Ruddle F., Nichols E., Holmes R., van Nie R., Vandeberg J.L. and Nikkels R.(1981) Mammary tumours in the mouse. Hilgers J. and Sluyser M. eds., Elservier /North-Holland Boimedical Press, 11–44.Google Scholar
  6. Jeffreys A.J.(1979) DNA sequence variants in the,Gγ-,Aγ-, β- and δ-globin genes of man. Cell, 18, 1–10.PubMedCrossRefGoogle Scholar
  7. Jones K.W.(1970) Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature, 225, 912–915.PubMedCrossRefGoogle Scholar
  8. Kominami R., Urano Y., Mishima Y. and Muramatsu M.(1981) Organization of ribosomal RNA gene repeats of the mouse. Nucl. Acids Res., 9, 3219–3233.PubMedCrossRefGoogle Scholar
  9. Kominami R., Urano Y., Mishima Y., Muramatsu M., Moriwaki K., and Yoshikura H.(1983a). Novel repetitive sequence families showing size and frequency polymorphism in the genomes of mice. J. Mol. Biol., 165, 209–228.PubMedCrossRefGoogle Scholar
  10. Kominami R., Muramatsu M., and Moriwaki K.,(1983b) A type 2 Alu sequence(M2) is mobile in the genome. Nature, 301, 87–89.PubMedCrossRefGoogle Scholar
  11. Kominami R., Sudo K., Yoshikura H., Suzuki H., Moriwaki K., Hilgers J. and Muramatsu M. (1985) A polymorphic repetitive sequence PR1 family; Evidence for meiotic instability. J. Mol. Biol, in pressGoogle Scholar
  12. Maio J.J., Brown F.L., and Musich P.R. (1977) Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA. J. Mol. Biol., 117, 637–655.PubMedCrossRefGoogle Scholar
  13. Miller D.A., Tantravachi R., Dev V.G. and Miller O.J.(1976) Q- and C-banding chromosome markers in inbred strains of Mus musculus. Genetics, 84, 67–75.PubMedGoogle Scholar
  14. Moriwaki K. and Minezawa M.(1976). Geographical distribution of No. 18 chromosome polymorphism. Ann. Rep. Natl. Inst. Genet., 27, 46–47.Google Scholar
  15. Pardue M.L. and Gall J.G.(1970) Chromosomal localization of mouse satel1ite DNA. Science, 168, 1356–1358.PubMedCrossRefGoogle Scholar
  16. Poorman P.A., Moses M.J., Russell L.B., and Cacheiro N.L.A.(1981) Synaptonemal complex analysis of mouse chromosomal rearrangements. Chromosoma, 81, 507–518.PubMedCrossRefGoogle Scholar
  17. Roberts J.M. and Axel R.(1982). Gene amplification and gene correction in somatic cells. Cell, 29, 109–119.PubMedCrossRefGoogle Scholar
  18. Rubin G.M., Kidwell M.G. and Bingham P.M. (1982) The molecular basis of P-M hybrid dysgenesis; the nature of induced mutation. Cell, 29, 987–994.PubMedCrossRefGoogle Scholar
  19. Searle A.G., Beechey C.V., Boer P., Rooij D.G., Evans E.P. and Kirk M.(1983) A male-sterile insertion in the mouse. Cytogenet. Cell Genet., 36, 617–626.PubMedCrossRefGoogle Scholar
  20. Smith G.P.(1976) Evolution of repeated DNA sequences by unequal crossover. Science, 191, 528–535.PubMedCrossRefGoogle Scholar
  21. Southern E.M.(1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98, 503–517.PubMedCrossRefGoogle Scholar
  22. Yoshida M.C. and Kodama Y. (1983) C-band patterns of chromosomes in 17 strains of mice. Cytogenet. Ce11 Genet., 35, 51–56.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. Kominami
  • M. Muramatsu
  • K. Sudo
  • H. Yoshikura
  • H. Suzuki
  • K. Moriwaki
  • J. Hilgers

There are no affiliations available

Personalised recommendations