Focal Flow Disturbances in Acute Strokes: Effects on Regional Metabolism and Tissue pH

  • Y. L. Yamamoto
  • A. M. Hakim
  • M. Diksic
  • R. P. Pokrupa
  • E. Meyer
  • J. Tyler
  • A. C. Evans
  • K. Worsley
  • C. J. Thompson
  • W. H. Feindel


In acute stroke, the reduction of blood flow causes tissue damage and sets of a complex escalating chain reaction from acid metabolites and also from products of disturbed intracellular ionic homeostasis. These events may lead to lipolysis and proteolysis [35, 41]. Although regional cerebral blood flow (rCBF) is an appropriate function to measure in acute stroke, recent studies have revealed that it varies widely inpatients with similar neurologic deficits from stroke. Moreover, 133Xe intracarotid studies have shown focal hyperemia to be a striking early feature in some patients with stroke [29,42–44] and for this reason also, rCBF is a poor indicator of residual cerebral tissue function. In contrast, positron emission tomography (PET) imaging has shown a consistently reduced regional cerebral metabolic rate (below 67 µmol/100g/min) for oxygen (rCMRO2) in the infarcted area [30, 48, 49].


Positron Emission Tomography Acute Stroke Positron Emission Tomography Study Regional Cerebral Blood Flow Contralateral Cerebral Hemisphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman RH, Correia JA, Alpert NM, Baron JC, Gouliamos A, Brownell GL, Taveras JM (1981) Positron imaging in ischemic stroke disease using compounds labelled with oxygen-15: initial results of clinicophysiologic correlations. Arch Neurol 38:537–543PubMedGoogle Scholar
  2. 2.
    Baron JC, Comar D, Bousser MG, Plummer D, Loch C, Kellershohn C, Castaigne P (1979) Patterns of CBF and oxygen extraction (EO2) in hemispheric infarcts: A tomographic study with the 15O continuous inhalation technique. Acta Neurol Scand 60 [Suppl 72]: 324–325Google Scholar
  3. 3.
    Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P (1981) Non-invasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Eur Neurol 20:273–284PubMedCrossRefGoogle Scholar
  4. 4.
    Bida GT, Satyamurthy N, Barrio JR (1984) The synthesis of 2[F-18]fluoro-2-deoxy-D-glucose using glycals: a re-examination. J Nucl Med 25:1327–1334PubMedGoogle Scholar
  5. 5.
    Brooks R (1982) Alternative formula for glucose utilization using labelled deoxyglucose. J Nucl Med 23:538–539PubMedGoogle Scholar
  6. 6.
    Cook BE, Evans AC (1983) A phantom to assess quantitative recovery in positron tomography. J Comput Assist Tomogr 7:876–880CrossRefGoogle Scholar
  7. 7.
    Cook BE, Evans AC, Fanthome EC et al. (1984) Performance figures and images from the Therascan 3128 positron emission tomography. IEEE Trans Nucl Sci NS-31: 640–644CrossRefGoogle Scholar
  8. 8.
    Cummins CJ, Lust WD, Passonneau JV (1983) Regulation of glycogen metabolism in primary and transformed astrocytes in vitro. J Neurochem 40:128–136PubMedCrossRefGoogle Scholar
  9. 9.
    Diksic M (1984) A new, simple, high-yield synthesis of “no-carrier-added” 11C-labelled DMO. Int J Appl Radiat Isot 35:1035–1037PubMedCrossRefGoogle Scholar
  10. 10.
    Diksic M, Jolly D (1983) New high-yield synthesis of 18F-labelled 2-deoxy-2-fluoro-D-glucose. Int J Appl Radiat Isot 34:894–896CrossRefGoogle Scholar
  11. 11.
    Diksic M, Jolly D, Farrokhzad S (1982) An on-line synthesis of “no-carrier-added” 11C-phosgene. Int J Nucl Med Biol 9:238–284CrossRefGoogle Scholar
  12. 12.
    Feindel W, Perot P (1965) Red cerebral veins. J Neurosurg 22:315–325PubMedCrossRefGoogle Scholar
  13. 13.
    Feindel W, Yamamoto YL (1967) Luxury - perfusion syndrome. Lancet 1:48–49CrossRefGoogle Scholar
  14. 14.
    Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736PubMedCrossRefGoogle Scholar
  15. 15.
    Ginos JZ, Tilbury RS, Haber MT, Rottenberg DA (1982) Synthesis of 2-11C-5,5-dimethyl-2,4-oxazolidinedione for studies with positron tomography. J Nucl Med 23:255–258PubMedGoogle Scholar
  16. 16.
    Greenberg JH, Reivich M (1983) Autoradiographic determination of local cerebral glucose metabolism: physiological and pathological studies. In: Szabo AJ (ed) Advances in metabolic disorders, vol 10. Academic, New York, pp 67–133Google Scholar
  17. 17.
    Hakim AM, Pokrupa R, Kitamura S, Evans A, Diksic M, Yamamoto YL, Feindel W (1984a) PET studies of circulation, energy metabolism and acid-base status after acute cerebral infarction in man. Nineteenth Canadian Congress of Neurological Sciences, Edmonton, AlbertaGoogle Scholar
  18. 18.
    Hakim AM, Pokrupa R, Kitamura S, Yamamoto YL, Meyer E, Diksic M, Thompson CJ, Evans A, Feindel W (1984b) Acute cerebral infarction in humans: studies of cerebral circulation, metabolism and acid-base status by PET. 109th Annual Meeting of the American Neurological Association, Baltimore, Maryland, October 7–10Google Scholar
  19. 19.
    Hakim AM, Pokrupa RP, Diksic M, Evans AC, Thompson CJ, Meyer E, Yamamoto YL, Feindel W (1985) Acute cerebral infarction in man: studies of cerebral perfusion, metabolism and acid-base status by positron emission tomography. (In press)Google Scholar
  20. 20.
    Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1:37–51PubMedCrossRefGoogle Scholar
  21. 21.
    Heiss WD, Pawlik G, Wagner R, Ilsen HW, Herholz K, Wienhard K (1983) Functional hypometabolism in non-infarcted brain regions in ischemic stroke. J Cereb Blood Flow Metab 3 [Suppl 1]:582–583Google Scholar
  22. 22.
    Heiss WD, Wienhard K, Pawlik G, Wagner R, Ilsen HW, Herholz K (1985) Hypometabolism in stroke: cerebral metabolic rate for glucose in infarcted and remote tissue obtained by dynamic determination of individual kinetic constants. In: Greitz T, Ingvar DH, Widén L(eds) The metabolism of the human brain studied with positron emission tomography, Raven, New York, pp 399–410Google Scholar
  23. 23.
    Hertz L (1979) Functional interactions between neurons and astrocytes: turnover and metabolism of putative amino acid transmitters. Prog Neurobiol 13:277–323PubMedCrossRefGoogle Scholar
  24. 24.
    Hertz L (1981) Features of astrocytic function apparently involved in the response of central nervous tissue to ischemic hypoxia. J Cereb Blood Flow Metab 1:143–153PubMedCrossRefGoogle Scholar
  25. 25.
    Huang SC, Phelps M, Hoffman E, Sideris K, Selin CJ, Kuhl DE (1980) Non-invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: 69–82Google Scholar
  26. 26.
    Kearfott KJ, Junck L, Rottenberg DA (1983) 11C-dimethyloxazolidinedione (DMO): Biodistribution, estimates of radiation absorbed dose and potential for positron emission tomography (PET) measurement of regional brain tissue pH. J Nucl Med 24:805–811PubMedGoogle Scholar
  27. 27.
    Kuhl DE, Phelps ME, Kornwell RP, Metter EJ, Seline C, Winter J (1980) Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:47–60PubMedCrossRefGoogle Scholar
  28. 28.
    Lammertsma AA, Jones T, Frackowiak RSJ, Lenzi GL (1981) A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilization using oxygen-15. J Comput Assist Tomogr 5:544–550PubMedCrossRefGoogle Scholar
  29. 29.
    Lassen NA (1966) The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain. Lancet 11:1113–1115CrossRefGoogle Scholar
  30. 30.
    Lenzi GL, Frackowiak RSJ, Jones T et al. (1981) CMRO2 and CBF by oxygen-15 inhalation technique. Results in normal volunteers and cerebrovascular patients. Eur Neurol 20:285–290PubMedCrossRefGoogle Scholar
  31. 31.
    Lenzi GL, Frackowiak RSJ, Jones T (1982) Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab 2:321–335PubMedCrossRefGoogle Scholar
  32. 32.
    Penfield W (1933) The evidence for a cerebral vascular mechanism in epilepsy. Ann Intern Med 7:303–310Google Scholar
  33. 33.
    Penfield W (1938) The circulation of the epileptic brain. Res Publ Assoc Res Nerv Ment Disc 18:605–637Google Scholar
  34. 34.
    Phelps ME, Huang SC, Hoffman E, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with 18F-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388PubMedCrossRefGoogle Scholar
  35. 35.
    Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13:2–10PubMedCrossRefGoogle Scholar
  36. 36.
    Rehncrona S, Westerberg E, Akesson B, Siesjö BK (1982) Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J Neurochem 38:84–93PubMedCrossRefGoogle Scholar
  37. 37.
    Rhodes CG, Wise RJS, Hatazawa J, Frackowiak RSJ, Palmer AJ, Jones T (1982) Mismatching between cerebral oxygen and glucose metabolism in patients with cerebral glioma and stroke. In: Raynaud (ed) Nuclear medicine and biology, Proceedings of Third World Congress, Paris, vol 2. Pergamon, Paris, pp 2200–2203Google Scholar
  38. 38.
    Robinson GD Jr (1984) private communicationGoogle Scholar
  39. 39.
    Rottenberg DA, Ginos JZ, Kearfott KJ, Junck L et al. (1985) In vivo measurement of brain tumor pH using 11C-DMO and positron emission tomography. Ann Neurol 17:70–79PubMedCrossRefGoogle Scholar
  40. 40.
    Samuelsson B, Borgeat P, Hammarstrom S et al. (1980) Leukotrienes: a new group of biologically active compounds. Adv Prostoglandin Thromboxane Leukotriene Res 6:1–18Google Scholar
  41. 41.
    Siesjö BK (1984) Cerebral circulation and metabolism. J Neurosurg 60:883–908PubMedCrossRefGoogle Scholar
  42. 42.
    Skyhoj Olsen T, Larsen B, Skriver EB, Herning M, Enevoldsen E, Lassen NA (1981) Focal cerebral hyperemia in acute stroke; incidence, pathophysiology and clinical significance. Stroke 12:598–606CrossRefGoogle Scholar
  43. 43.
    Skyhoj Olsen T, Larsen B, Herning M, Skriver EB, Lassen NA (1983) Blood flow and vascular reactivity in collaterally perfused brain tissue. Stroke 14:332–341CrossRefGoogle Scholar
  44. 44.
    Skyhoj Olsen T, Lassen NA (1984) A dynamic concept of middle cerebral artery occlusion and cerebral infarction in the acute state based on interpreting severe hyperemia as a sign of embolic migration. Stroke 15:458–468CrossRefGoogle Scholar
  45. 45.
    Sokoloff L, Reivich M, Kennedy C et al. (1977) The 14C-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedCrossRefGoogle Scholar
  46. 46.
    Strother SC, Evans AC, Thompson CJ (1984) Testing quantitation in PET. J Nucl Med 25:107Google Scholar
  47. 47.
    Syrota A, Castaing M, Rougemont D, Berridge M, Maziere B, Baron JC, Bousser MG, Rocidalo JJ (1983) Tissue acid base balance and oxygen metabolism in human cerebral infarction studied with positron emission tomography. Ann Neurol 14:419–428PubMedCrossRefGoogle Scholar
  48. 48.
    Wise RJS, Bernardi S, Frackowiak RSJ, Legg NJ, Jones T (1983a) Serial observations on the pathophysiology of acute stroke. Brain 106:197–222PubMedCrossRefGoogle Scholar
  49. 49.
    Wise RJS, Rhodes CG, Gibbs JM, Hatazawa J, Palmer T, Frackowiak RSJ, Jones T (1983b) Disturbance of oxidative metabolism of glucose in recent human cerebral infarcts. Ann Neurol 14:627–637PubMedCrossRefGoogle Scholar
  50. 50.
    Yamaguchi T, Waltz AG, Okazaki H (1971) Hyperemia and ischemia in experimental cerebral infarction: correlation of histopathology and regional blood flow. Neurology (Minneap) 21:565–578Google Scholar
  51. 51.
    Yamamoto YL, Phillips KM, Hodge CP, Feindel W (1971) Microregional blood flow changes in experimental cerebral ischemia: effects of arterial carbon dioxide studies by fluorescein angiography and xenon-133 clearance. J Neurosurg 35:155–166PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Y. L. Yamamoto
  • A. M. Hakim
  • M. Diksic
  • R. P. Pokrupa
  • E. Meyer
  • J. Tyler
  • A. C. Evans
  • K. Worsley
  • C. J. Thompson
  • W. H. Feindel

There are no affiliations available

Personalised recommendations