Skip to main content

Aims on Phosphorus-31 Magnetic Resonance Imaging

  • Conference paper
Functional Mapping of the Brain in Vascular Disorders
  • 40 Accesses

Abstract

Nuclear magnetic resonance (NMR) is capable of producing anatomical and biochemical data on the brain. Hydrogen-1 [11, 15] exists in abundance in the human body, differs in concentration from one tissue to another, and can be readily detected. Many investigators have therefore used it in tomography [8, 9, 12, 21], and the technique has reached a stage of practical application. However, since only limited biochemical data are available for 1H, the application of 13C, 19F, 31P, and others is being tried. Using 31P-NMR, changes in phosphocreatine, adenosine triphosphate (ATP), sugar phosphates and inorganic phosphate can be determined, but it takes 30-60 min to produce an image. Therefore, 31P-NMR is inadequate for tomography at present. Thus, our aim is to obtain the local spectra of 31P-NMR [1, 13, 26] in vivo in a specified region, utilizing 1H-NMR-CT (computed tomography) as guide, and to establish a biochemical diagnosis of ischemic lesions in the brain. For this purpose, we conducted a fundamental study, in which alterations in phosphorus metabolism were investigated by 31P-NMR spectrometry of the rat ischemic brain and the hypoxic brain, as shown in the sections “In Vitro Study” and “In Vivo Study.” In addition, we are now working on 31P-MRI as shown in the section headed “MRI of 31P”. These works will be mentioned in this order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman JJH, Grove TH, Wong GG, Gadian DG, Radda GK (1980) Mapping of metabolites in whole animals by 31P-NMR using surface coils. Nature 283:167–170

    Article  PubMed  CAS  Google Scholar 

  2. Bottomley PA, Nunnally RL (1980) Localized 31P-NMR studies of the metabolism of perfused hearts: new methods for assessing drug therapy. Bull Magn Reson 2:423–424

    Google Scholar 

  3. Bottomley PA, Foster TH, Lene WH (1984) In vivo nuclear magnetic resonance chemical shift imaging by selective irradiation. Proc Natl Acad Sci USA 81d:6856–6860

    Article  Google Scholar 

  4. Brunner EA, Passonneau TV, Molstad C (1971) The effect of volatile anaesthetics of levels of metabolites and on metabolic rate in brain. J Neurochem 18:2301–2316

    Article  PubMed  CAS  Google Scholar 

  5. Chance B, Eleff S, Leigh JS, Sokolow D (1980) Noninvasive, nondestructive approach to cell bioenergetics. Proc Natl Acad Sci USA 77:7430–7434

    Article  PubMed  CAS  Google Scholar 

  6. Chance B, Nakase Y, Bond M, Leigh JS, McDonald G (1978) Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci USA 75:4925–4929

    Article  PubMed  CAS  Google Scholar 

  7. Doyle FH, Gore JC, Pennock JM, Bydder GM, Orr JS, Steiner RE, Young IR, Burl M, Clow H, Gilderdale DJ, Bailes DR, Walters PE (1981) Imaging of the brain by nuclear magnetic resonance. Lancet 11:8237–8241

    Google Scholar 

  8. Edelstein WA, Hutchison JMS, Smith FW, Mallard J, Johnson G, Redpath TW (1981) Human whole-body NMR tomographic imaging: normal sections. Br J Radiol 54:149–151

    Article  PubMed  CAS  Google Scholar 

  9. Edwards RHT, Dawson MJ, Wilkie DR, Gordon RE, Shaw D (1982) Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet 1:725–730

    Article  PubMed  CAS  Google Scholar 

  10. Hassen G, Crooks LE, Davis P, De Groot J, Herfkens R, Margulis AR, Gooding C, Kaufman L, Hoenninger J, Arakawa M, McRee R, Watts J (1980) In vivo imaging of the rat anatomy with nuclear magnetic resonance. Radiology 136:695–700

    Google Scholar 

  11. Herfkens R, Davis P, Crooks L, Kaufman L, Price D, Miller T, Margulis AR, Watts J, Hoenninger J, Arakawa M, McRee R (1981) NMR imaging of the abnormal live rat and correlation with tissue characteristics. Radiology 141:211–218

    PubMed  CAS  Google Scholar 

  12. Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252:285–287

    Article  PubMed  CAS  Google Scholar 

  13. Kogure K, Scheinberg P, Utsunomiya Y, Kishikawa H, Busto R (1977) Sequential cerebral biochemical and physiological events in controlled hypoxemia. Ann Neurol 2:304–310

    Article  PubMed  CAS  Google Scholar 

  14. Lauterbur PC (1973) Image formation by induced local interactions: examples employing NMR. Nature 242:190–191

    Article  CAS  Google Scholar 

  15. Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36:1–16

    PubMed  CAS  Google Scholar 

  16. Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic New York

    Google Scholar 

  17. Matsui S, Sekihara K, Kohno H (1985) High-speed spatially-resolved high-resolution NMR spectroscopy. J Am Chem Soc 107:2817–2818

    Article  CAS  Google Scholar 

  18. Matsui S, Sekihara K, Kohno H (1985) High-speet spatially resolved NMR spectroscopy using phase-modulated spin-echo trains. Expansion of the spectral bandwidth by combined use of delayed spin-echo trains. J Magn Reson (in press)

    Google Scholar 

  19. Maudsley AA, Hilal SK, Simon HE, Witterkock S (1984) In vivo MR spectroscopic imaging with P-31. Radiology 153:745–750

    PubMed  CAS  Google Scholar 

  20. Moon RB, Richards JH (1973) Determination of intercellular pH by 31P magnetic resonance. J Biol Chem 248:7276–7278

    PubMed  CAS  Google Scholar 

  21. Moore WS, Holland GN (1980) Nuclear magnetic resonance imaging. Br Med Bull 36:297–299

    PubMed  CAS  Google Scholar 

  22. Nilsson L, Kogure K, Busto R (1975) Effects of hypothermia and hyperthermia on brain energy metabolism. Acta Anaesthesiol Scand 19:199–205

    Article  PubMed  CAS  Google Scholar 

  23. Nummally RL, Bottomley PA (1981) A phosphorus nuclear magnetic resonance assessment of pharmacological treatment of myocardial infarction using surface coils. Science 211:177–180

    Article  Google Scholar 

  24. Pontén U, Ratcheson RA, Salford LG, Siesjö BK (1973) Optimal freezing conditions for cerebral metabolites in rats. J Neurochem 21:1127–1138

    Article  PubMed  Google Scholar 

  25. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  PubMed  CAS  Google Scholar 

  26. Radda GK, Chan L, Bore PB, Gadian DG, Ross BD, Styles P, Taylor D (1982) Clinical applications of 31P-NMR. In: Karstaedt N, Witcofski RL (eds) Proc International NMR Symposium, Bowman-Gray School of Medicine, October 1–3, 1981. Bowman-Gray School of Medicine

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kogure, K., Ohtomo, H., Matsui, S., Kohno, H. (1985). Aims on Phosphorus-31 Magnetic Resonance Imaging. In: Heiss, WD. (eds) Functional Mapping of the Brain in Vascular Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70720-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70720-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15801-1

  • Online ISBN: 978-3-642-70720-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics