Biosynthesis of Chorismate-Derived Quinones in Plant Cell Cultures

  • E. Leistner
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Although quinones are derived from a variety of different precursors (for reviews see Leistner 1981, 1984), they belong to those secondary plant products that are produced in cell cultures in rather large amounts. Thus acetate derived anthraquinones occur in tissue cultures of Cassia (Tabata et al. 1975; Takahashi et al. 1978;Noguchi and San-kawa 1982) and Rheum (Furuya et al. 1975; Rai 1978). Selection of strains yielded a Nicotiana tabacum cell culture which produced rather large amounts of ubiquinone-10 (Matsumoto et al. 1980). This quinone is derived from phenylpropanoids and mevalonic acid, as are the naphthoquinones alkannin and shikonin occurring in Echium (Fukui et al. 1983) and Lithospermum (Fukui et al. 1984) cell suspension and callus cultures. The present review concentrates on quinones derived from chorismate1 via o-succinyl-benzoic acid.


Cell Suspension Culture Plant Cell Culture Naphthalene Acetic Acid Mevalonic Acid Succinic Semialdehyde 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauch HJ, Leistner E (1978a) Aromatic metabolites in cell suspension cultures of Galium mollugo L.Planta Med 33:105–123CrossRefGoogle Scholar
  2. Bauch HJ, Leistner E (1978b) Attempts to demonstrate incorporation of labelled precursors into aromatic metabolites in cell suspension cultures of Galium mollugo L. Planta Med 33:124–127CrossRefGoogle Scholar
  3. Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241–280PubMedGoogle Scholar
  4. Briggs LH, Nickolls GA (1954) Chemistry of the Coprosma Genus. Part VIII. The occurrence of asperuloside. J Chem Soc:3940–3943Google Scholar
  5. Demagos GP, Baltus W, Höfle G (1981) New anthraquinones and anthraquinone glycosides from Morinda lucida. Z Naturforsch 86b:1180–1184Google Scholar
  6. Dhruva BR, Rama Rao AV, Srinivasan R, Venkataraman K (1972) Structure of a quinone from teak tissue culture. Indian J Chem 10:683–685Google Scholar
  7. El-Shagi H, Schulte U, Zenk MH (1984) Specific inhibition of anthraquinone formation by amino acid compounds in Morinda cell cultures. Naturwissenschaften 71:267CrossRefGoogle Scholar
  8. Fukui H, Tsukada M, Mizukami H, Tabata M (1983) Formation of stereoisomeric mixture of naphthoquinone derivatives in Echium lycopsis callus cultures. Phytochemistry 22:453–456CrossRefGoogle Scholar
  9. Fukui H, Yoshikawa N, Tabata M (1984) Induction of benzoquinone formation by activated carbon in Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 23:301–305CrossRefGoogle Scholar
  10. Furuya T, Ayabe S, Noda K (1975) Chrysophanol and emodin from callus tissue of Rhubarb (Rheum palmatum). Phytochemistry 14:1457CrossRefGoogle Scholar
  11. Heide L, Leistner E (1981) 2-Methoxycarbonyl-3-prenyl-l,4-naphthoquinone, a metabolite related to the biosynthesis of mollugin and anthraquinones in Galium mollugo L. JCS Chem Commun 334–336Google Scholar
  12. Heide L, Leistner E (1982) Versuche zur Synthese natürlicher vorkommender prenylierter Naphthalinderivate. Nachweis eines neuen Prenylchinonderivates in Galium mollugo. Z Naturforsch 37c:354–362Google Scholar
  13. Heide L, Leistner E (1983) Enzyme activities in extracts of anthraquinone-containing cells of Galium mollugo. Phytochemistry 22:659–662CrossRefGoogle Scholar
  14. Heide L, Arendt S, Leistner E (1982a) Enzymatic synthesis, characterization and metabolism of the coenzyme A ester of o-succinylbenzoic acid, an intermediate in menaquinone (vitamin K2) biosynthesis. J Biol Chem 257:7396–7400PubMedGoogle Scholar
  15. Heide L, Kolkmann R, Arendt S, Leistner E (1982b) Enzymic synthesis of o-succinylbenzoyl-CoA in cell-free extracts of anthraquinone producing Galium mollugo L. cell suspension cultures. Plant Cell Rep 1:180–182CrossRefGoogle Scholar
  16. Igbavboa U (1981) Diplomarbeit, Inst Pharm Biol Phytochem, Westfälische Wilhelms-Univ, Münster, FRGGoogle Scholar
  17. Inoue K, Shiobora Y, Nayeshiro H, Inouye H, Wilson G, Zenk MH (1979) Site of prenylation in anthraquinone biosynthesis in cell suspension cultures of Galium mollugo. JCS Chem Commun: 957–959Google Scholar
  18. Inoue K, Nayeshiro H, Inouye H, Zenk MH (1981a) Anthraquinones in cell suspension cultures of Morinda citrifolia. Phytochemistry 20:1693–1700CrossRefGoogle Scholar
  19. Inoue K, Ueda S, Shiobara Y, Kimura I, Inouye H (1981b) Quinones and related compounds in higher plants. Part 11. Role of 2-carboxy-2,3-dihydro-l,4-naphthoquinone and 2-carboxy-2-(3-methyl-but-2-enyl)-2,3-dihydro-l,4-naphthoquinone in the biosynthesis of naphthoquinone congeners of Catalpa ovata callus tissue. JCS Perkin 1:1246–1258CrossRefGoogle Scholar
  20. Inoue K, Shiobara Y, Nayeshiro H, Inouye H, Wilson G, Zenk MH (1984a) Biosynthesis of anthraquinones and related compounds in Galium mollugo cell suspension cultures. Phytochemistry 23:307–311CrossRefGoogle Scholar
  21. Inoue K, Ueda S, Nayeshiro H, Moritone N, Inouye H (1984b) Biosynthesis of naphthoquinones and anthraquinones in Streptocarpus dunnii cell cultures. Phytochemistry 23:313–318Google Scholar
  22. Kaiping S, Soll J, Schulz G (1984) Site of methylation of 2-phytyl-l,4-naphthoquinol in phyllo-quinone (vitamin K1) synthesis in spinach chloroplasts. Phytochemistry 23:89–91CrossRefGoogle Scholar
  23. Kolkmann R, Knauel G, Arendt S, Leistner E (1982) Site of activation of o-succinylbenzoic acid during its conversion to menaquinones (vitamin K2). FEBS Lett 137:53–56CrossRefGoogle Scholar
  24. Kolkmann R, Leistner E (1985) Synthesis and revised structure of the o-succinylbenzoic acid coenzyme A ester, an intermediate in menaquinone biosynthesis. Tetrahedron L 26:1703–1704CrossRefGoogle Scholar
  25. Leistner E (1973a) Biosynthesis of morindone and alizarin in intact plants and cell suspension cultures of Morinda citrifolia. Phytochemistry 12:1669–1674CrossRefGoogle Scholar
  26. Leistner E (1973b) Mode of incorporation of precursors into alizarin (l,2-dihydroxy-9,10-anthra-quinone). Phytochemistry 12:337–345CrossRefGoogle Scholar
  27. Leistner E (1975) Isolierung, Identifizierung und Biosynthese von Anthrachinonen in Zellsuspen-sionskulturen von Morinda citrifolia. Planta Med Suppl:214–224Google Scholar
  28. Leistner E (1981) Biosynthesis of plant quinones. In: Conn EE (ed) The biochemistry of plants, vol VII. Academic Press, London New York, pp 403–423Google Scholar
  29. Leistner E (1985) Occurrence and biosynthesis of quinones in woody plants. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, London New York, pp 273–290Google Scholar
  30. Leistner E, Zenk MH (1967) Ein neuer Biosyntheseweg für Anthrachinone: Der Einbau von Shiki-minsäure in 1,2-Dihydroxy-anthrachinon (Alizarin) und 1,2,4-Trihydroxy-anthrachinon (Purpurin) in Rubia tinctorum L. Z Naturforsch 22b:865–868Google Scholar
  31. Matsumoto T, Ikeda T, Kanno N, Kisaki T, Noguchi M (1980) Selection of high ubiquinone 10-producing strain of tobacco cultured cells by cell cloning technique. Agric Biol Chem 44:967–969CrossRefGoogle Scholar
  32. Meganathan R, Bentley R (1983) Thiamine pyrophosphate requirement for o-succinylbenzoic acid synthesis in Escherichia coli and evidence for an intermediate. J Bacteriol 153:739–746PubMedGoogle Scholar
  33. Müller WU, Leistner E (1978a) Metabolic relation between naphthalene derivatives in Juglans. Phytochemistry 17:1735–1738CrossRefGoogle Scholar
  34. Müller WU, Leistner E (1978b) Aglycones and glycosides of oxygenated naphthalenes and a glyco-syltransferase from Juglans. Phytochemistry 17:1739–1742CrossRefGoogle Scholar
  35. Mulder-Krieger Th, Verpoorte R, Water A de, Gesel M von, Oeveren BCJA van (1982) Identification of the alkaloids and anthraquinones in Cinchona ledgeriana callus cultures. Planta Med 46: 19–24PubMedCrossRefGoogle Scholar
  36. Noguchi H, Sankawa U (1982) Formation of germichrysone by tissue cultures of Cassia torosa: Induction of secondary metabolism in the lag phase. Phytochemistry 21:319–323CrossRefGoogle Scholar
  37. Rai PP (1978) The production of anthraquinones in callus cultures of Rheum palmatum. J Nat Prod 41:114–116Google Scholar
  38. Rower I (1983) Diplomarbeit, Lehrstuhl Biochemie der Pflanzen, Westfälische Wilhelms-Univ, Münster, FRGGoogle Scholar
  39. Schildknecht H, Straub F, Scheidel B (1976) Mollugin, eine neuer Farbstoff aus Rhizomen des Wiesen-Labkrautes Galium mollugo L. Liebigs Ann Chem: 1295–1306Google Scholar
  40. Schulte U, El-Shagi H, Zenk MH (1984) Optimization of 19 Rubiaceae species in cell culture for the production of anthraquinones. Plant Cell Rep 3:51–54CrossRefGoogle Scholar
  41. Tabata M, Hiraoka N, Ikenoue M, Sano Y, Konoshima M (1975) The production of anthraquinones in callus cultures of Cassia tora. J Nat Prod 38:131–134Google Scholar
  42. Takahashi S, Kitanaka S, Takido M, Ebizuka Y, Sankawa U, Hoson M, Koboyashi M, Shibata S (1978) Formation of anthraquinones by the tissue culture of Cassia obtusifolia. Planta Med 33: 389–392CrossRefGoogle Scholar
  43. Wilson G, Marron P (1978) Growth and anthraquinoine biosynthesis by Galium mollugo L. cells in batch and chemostat culture. J Exp Bot 29:837–851CrossRefGoogle Scholar
  44. Zenk MH, El-Shagi H, Schulte U (1975) Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med Suppl:79–101Google Scholar
  45. Zenk MH, Schulte U, El-Shagi H (1984) Regulation of anthraquinone formation by phenoxy acetic acids in Morinda cell cultures. Naturwissenschaften 71:266CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • E. Leistner
    • 1
  1. 1.Institut für Pharmazeutische BiologieBonn 1Germany

Personalised recommendations