Skip to main content

Metabolic Relationships of Putrescine, GABA and Alkaloids in Cell and Root Cultures of Solanaceae

  • Conference paper
Book cover Primary and Secondary Metabolism of Plant Cell Cultures

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The diamine putrescine (1,4-diaminobutane) is the precursor of the polyamines spermidine (Spd) and spermine (Spm) in all living systems studied to date. In view of the functions that polyamines may have in plant growth and development (Smith 1985), it is of importance to understand the mechanisms that regulate the availability of precursor pools for the synthesis of these compounds. In most, if not all higher plants, putrescine is synthesized via two alternate routes: (1) decarboxylation of ornithine, which gives rise to putrescine directly; or(2) decarboxylation of arginine, with agmatine and N-carbamylputrescine as intermediates. The arginine decarboxylase pathway appears to be important under conditions of stress (Flores et al. 1985), whereas the ornithine decarboxylase pathway is closely correlated with rapid cell division (Cohen et al. 1982). Spd and Spm are formed by the transfer of one or two aminopropyl moieties, respectively, derived from decarboxylated S-adenosylmethionine (Tabor and Tabor 1984). There are, however, other possible metabolic fates of putrescine besides being a polyamine precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amrhein N, Gödeke K-H (1977) α-aminooxy-β-phenylpropionic acid — a potent inhibitor of L-phenylalanine ammonia lyase in vitro and in vivo. Plant Sci Lett 8:313–317

    Article  CAS  Google Scholar 

  • Berlin J (1981) Formation of putrescine and cinnamoyl putrescines in tobacco cell cultures. Phyto-chemistry 20:53–55

    CAS  Google Scholar 

  • Berlin J, Widholm JM (1977) Correlation between phenylalanine ammonia lyase activity and phenolic biosynthesis in p-fluorophenyl-alanine-sensitive and -resistant tobacco and carrot tissue cultures. Plant Physiol 59:550–553

    Article  PubMed  CAS  Google Scholar 

  • Cabanne F, Martin-Tanguy J, Martin C (1977) Phénolamines associées ‘à l’induction florale et á l’état reproducteur du Nicotiana tabacum var. Xanthi n.c. Physiol Veg 15:429–443

    CAS  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, Chantal D, Casse-Delbart F, Tempé J (1982) Agrobacterium rhi- zogenes insert T-DNA into the genomes of the host plant root cells. Nature (London) 295: 432–434

    Article  CAS  Google Scholar 

  • Cohen E, (Malis) Arad E, Heimer YM, Mizrahi Y (1982) Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol 70:540–543

    Article  PubMed  CAS  Google Scholar 

  • Dawson RF (1942) Nicotine synthesis in excised tobacco roots. Am J Bot 29:813–815

    Article  CAS  Google Scholar 

  • Filner P (1978) Regulation of inorganic nitrogen and sulfur assimilation in cell suspension cultures. In: Thorpe TA (ed) Frontiers of plant tissue culture 1978. Int Assoc Plant Tissue Cult, Calgary, pp 437–442

    Google Scholar 

  • Flint D (1984) Gabaculine inhibits δ-ALA synthesis in chloroplasts. Plant Physiol (Suppl) 75:170 (Abstr)

    Google Scholar 

  • Flores HE, Filner P (1985) Polyamine catabolism in higher plants: Characterization of pyrroline dehydrogenase. Plant Growth Regul 3:275–289

    Article  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Young ND, Galston AW (1985) Polyamine metabolism and plant stress. In: Key JL, Kosuge T (eds) Cellular and molecular biology of plant stress. Liss, New York, in press

    Google Scholar 

  • Hashimoto T, Yamada Y (1983) Scopolamine production in suspension cultures and redifferentiated roots of Hyoscyamus niger. Planta Med 47:195–199

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Miyasawa S, Endo A (1977) Isolation and inhibitory activity of gabaculine, a new potent inhibitor of 7-aminobutyrate aminotransferase produced by a Streptomyces. FEBS Lett 76:207–210

    Article  PubMed  CAS  Google Scholar 

  • Martin-Tanguy J, Cabanne F, Perdrizet E, Martin C (1978) The distribution of hydroxycinnamic acid amides in flowering plants. Phytochemistry 17:1927–1928

    Article  CAS  Google Scholar 

  • Ponchet M, Martin-Tanguy J, Poupet A, Marais A, Beck D (1982) Separation and quantification of basic hydroxycinnamic amides and hydroxycinnamic acids by reversed-phase high-performance liquid chromatography. J Chromatogr 240:397–404

    Article  CAS  Google Scholar 

  • Skokut TA, Filner P (1980) Slow adaptive changes in urease levels of tobacco cells cultured on urea and other nitrogen sources. Plant Physiol 65:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36:117–143

    Article  CAS  Google Scholar 

  • Solt ML (1957) Nicotine production and growth of excised tobacco root cultures. Plant Physiol 32:480–488

    Article  PubMed  CAS  Google Scholar 

  • Street HE, Henshaw GG (1966) Introduction and methods employed in plant tissue culture. In: Willmer EN (ed) Cells and tissues in culture. Methods, biology and physiology, vol III. Academic Press, London New York, p 459

    Google Scholar 

  • Tabata M, Yamamoto H, Hiraoka N, Konoshima M (1972) Organization and alkaloid production in tissue cultures of Scopolia parviflora. Phytochemistry 11:949–955

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • Waller GR, Novacki EK (1978) Alkaloid biology and metabolism in Plants. Plenum Press, New York London

    Google Scholar 

  • White PR (1938) Cultivation of excised roots of dicotyledonous plants. Am J Bot 25:348–356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flores, H.E., Filner, P. (1985). Metabolic Relationships of Putrescine, GABA and Alkaloids in Cell and Root Cultures of Solanaceae. In: Neumann, KH., Barz, W., Reinhard, E. (eds) Primary and Secondary Metabolism of Plant Cell Cultures. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70717-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70717-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70719-3

  • Online ISBN: 978-3-642-70717-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics