Bone Turnover Assessment Using Bone-Specific Biochemical Markers

  • K. G. Mann
  • B. L. Riggs
Conference paper

Abstract

Simple, noninvasive methods for determining bone formation and bone resorption are urgently needed which are well-characterized, specific, and accurate. The lack of such methods severely contrains research of the pathophysiology of osteoporosis, other bone-losing metabolic disorders, and of the clinical evaluation of treatment. Radiocalcium kinetic studies combined with external calcium balance include a variable, nonresolvable long-term exchange component (which may represent as much as one-half of the computed bone turnover rate)(Riggs et al, 1971). Moreover, these methods, requiring the administration of radioactivity, are time-consuming and expensive. Bone histomorphometry, the other commonly employed technique measuring local rather than overall bone turnover, cannot guantify bone resorption rate accurately and requires an invasive procedure (Frost, 1973).

Keywords

Phosphorus Estrogen Osteoporosis Electrophoresis Warfarin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beresford, J.N., Gallagher, J.A., Poser, J.W., and Russell, R.G.G.: Production of osteocalcin by human bone cells in vitro effects of l,25(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab. Bone Dis. Rel. Res. 5, 229, 1984.CrossRefGoogle Scholar
  2. 2.
    Brown, J.P., Delmas, P.D., Malaval, L., Edouard, C., Chapuy, M.C., and Meunier, P.J.: Serum bone Glaprotein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 10 91, 1984.Google Scholar
  3. 3.
    Deftos, L.J., Parthemore, J.G., and Price, P.A.: Changes in plasma bone Gla-protein during treatment of bone disease. Calcif. Tissue Int. 34, 121, 1982.PubMedCrossRefGoogle Scholar
  4. 4.
    Delmas, P.D., Stenner, D., Wahner, H.W., Mann, K.G., and Riggs, B.L.: Increase in serum bone Y-carboxyglutamic acid protein with aging in women: implications for the mechanism of age-related bone loss. J. Clin.Invest. 71, 1316, 1983a.PubMedCrossRefGoogle Scholar
  5. 5.
    Delmas, P.D., Wahner, H.W., Mann, K.G., and Riggs, B.L.: Assessment of bone turnover in postmenopausal osteoporosis by measurement of serum bone Glaprotein. J. Lab. Clin. Med. 102, 470, 1983b.PubMedGoogle Scholar
  6. 6.
    Delmas, P.D., Tracy, R.P., Riggs, B.L., and Mann, K.G.: Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif. Tissue Int. 36, 308, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Duda, R.J., Jr., Mann, K.G., and Riggs, B.L.: Calcitriol stimulation test for osteoblast function: Results in postmenopausal osteoporosis. Proc. 7th Annual Scientific Meeting, American Society for Bone and Mineral Research, June 15–18, 1985. Abstract #129.Google Scholar
  8. 8.
    Epstein, S., Poser, J., McClintock, R., Johnston, C.C., Jr., Bryce, G., and Hui, S.: Differences in serum bone Glaprotein with age and sex.i, 307, 1984.CrossRefGoogle Scholar
  9. 9.
    Farley, J.R., Chesnut, C.H., III, and Baylink, D.J.: Improved method for quantitative determination in serum of alkaline phosphatase of skeletal origin. Clin. Chem. 27, 2002, 1981.Google Scholar
  10. 10.
    Frost, H.M.: Bone remodeling and its relationship to metabolic bone diseases. In, Orthopedic Lecture Series, Charles C. Thomas, Springfield, 111, Vol. 8, 1973.Google Scholar
  11. 11.
    Gundberg, C.M., Lian, J.B., and Gallop, P.M.: Measurements of y-γcar-boxyglutamate and circulating osteocalcin in normal children and adults. Clin. Chim. Acta 128, 1, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Harris, W.H., and Heaney, R.P.: Skeletal renewal and metabolic bone disease. N. Engl. J. Med. 280, 193, 1969.PubMedCrossRefGoogle Scholar
  13. 13.
    Heaney, R.P., Recker, R.R., and Saville, P.D.: Menopausal changes in bone remodeling, J. Lab. Clin. Med. 92, 964, 1978.PubMedGoogle Scholar
  14. 14.
    Jowsey, J., Kelly, P.J., Riggs, B.L., Bianco, A.J., Scholz, D.A., and Gershon-Cohen, J.: Quantitative microradiographic studies of normal and osteoporotic bone. J. Bone Joint Surg. 47A, 785, 1965.PubMedGoogle Scholar
  15. 15.
    Krane, S.M., Kantrowitz, F.G., Byrne, M., Pinnell, S.R., and Singer, F.R.: Urinary excretion of hydroxylysine and its glycosides as an index of collagen degradation. J. Clin. Invest. 59, 819, 1977.PubMedCrossRefGoogle Scholar
  16. 16.
    Lian, J.B., Tassinari, M., and Glowacki, J.: Resorption of implanted bone prepared from normal and warfarin-treated rats. J. Clin. Invest. 73, 12 1984.Google Scholar
  17. 17.
    Meunier, P.J., Sellami, S., Briangon, D., and Edouard, C.: Histological heterogeneity of apparently idiopathic osteoporosis. In, Osteoporosis: Recent Advances in Pathogenesis and Treatment. Eds: DeLuca, H.F., Frost, H.M., Jee, W.S.S., Johnston, C.C., Jr., Parfitt, A.M. University Park Press, Baltimore, 1980, p. 293.Google Scholar
  18. 18.
    Nordin, B.E.C., Aaron, J., Speed, R., and Crilly, R.G.: Bone formation and resorption as the determinants of trabecular bone volume in postmenopausal osteoporosis. Lancet ii, 277, 1981.CrossRefGoogle Scholar
  19. 19.
    Parfitt, A.M., Mathews, C., Rao, D., Frame, B., Kleerekoper, M., and Villaneuva, A.R.: Impaired osteoblast function in metabolic bone disease. In, Osteoporosis: Recent Advances in Pathogenesis and Treatment. Eds: DeLuca, H.F., Frost, H.M., Jee, W.S.S., Johnston, C.C., Jr., Parfitt, A.M. University Park Press, Baltimore, 1980, p. 321.Google Scholar
  20. 20.
    Podenphant, J., Christiansen, C., Catherwood, B.D., and Deftos, L.J.: Serum bone Glaprotein variations during estrogen and calcium prophylaxis of postmenopausal women. Calcif. Tissue Int. 36, 536, 1984.PubMedCrossRefGoogle Scholar
  21. 21.
    Price, P.: Osteocalcin. In, Bone and Mineral Research, Annual I. Ed: Peck, W.A., Excerpta Medica, Amsterdam, Oxford, Princeton, 1983, pp 157–190.Google Scholar
  22. 22.
    Price, P.A., and Baukol, S.A.: 1,25-dihydroxyvitamin D3 increases synthesis of the vitamin D-dependent bone protein by osteosarcoma cells. J. Biol. Chem. 255, 1 1660, 1980.Google Scholar
  23. 23.
    Price, P.A., Parthemore, J.G., and Deftos, L.J.: New biochemical marker for bone metabolism: measurement by radioimmunoassay of bone Glaprotein in the plasma of normal subjects and patients with bone disease. J. Clin. Invest. 66, 878, 1980.PubMedCrossRefGoogle Scholar
  24. 24.
    Price, P.A., Williamson, M.K., Haba, T., Dell, R.B., and Jee, W.S.S.: Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. Proc. Ntl. Acad. Sci. USA 79, 7734, 1982.CrossRefGoogle Scholar
  25. 25.
    Riggs, B.L., Marshall, J.H., Jowsey, J., Heaney, R.P., and Bassingthwaighte, J.B.: Quantitative 4 5Ca autoradiography of human bone. J. Lab. Clin. Med. 78, 585, 1971.PubMedGoogle Scholar
  26. 26.
    Riggs, B.L., Tsai, K.-S., and Mann, K.G.: Evidence that serum bone Gla-protein is a measure of bone formation but not of bone resorption. Proc. 6th Annual Scientific Meeting, American Society for Bone and Mineral Research, June 26–29, 1984.Google Scholar
  27. 27.
    Romberg, R.W., Werness, P.G., Lollar, P., Riggs, B.L., and Mann, K.G.: Isolation and characterization of native adult osteonectin. J. Biol. Chem. 260, 2728, 1985.PubMedGoogle Scholar
  28. 28.
    Termine, J.D., Belcourt, A.B., Conn, K.M., and Kleinman, H.K.: Mineral and collagen-binding proteins of fetal calf bone. J. Biol. Chem. 256, 10403, 1981a.PubMedGoogle Scholar
  29. 29.
    Termine, J.D., Kleinman, H.K., Whitson, S.W., Conn, K.M., McGarvey, M. L., and Martin, G.R.: Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26, 99, 1981b.PubMedCrossRefGoogle Scholar
  30. 30.
    Wasi, S., Otsuka, K.., Yao, K.-L., Tung, P.S., Aubin, J.E., and Sodek, J.: An osteonectin-like protein in porcine periodontal ligament and its synthesis by periodontal ligament fibroblasts. Can. J. Biochem. Cell Biol. 62, 470, 1984.PubMedCrossRefGoogle Scholar
  31. 31.
    Whyte, M.P., Bergfeld, M.A., Murphy, W.A., Avioli, L.V., and Teitelbaum, S.L.: Postmenopausal osteoporosis: a heterogeneous disorder as assessed by histomorphometric analysis of iliac crest bone from untreated patients. Am. J. Med. 12, 193, 1982.CrossRefGoogle Scholar
  32. 32.
    Wu, K., Jett, S., and Frost, H.M.: Bone resorption rates in rib in physiological, senile and postmenopausal osteoporosis. J. Lab. Clin. Med. 69, 810, 1967.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • K. G. Mann
  • B. L. Riggs

There are no affiliations available

Personalised recommendations