Brain Edema pp 594-600 | Cite as

Effect of CSF Albumin Concentration on NMR Relaxation Parameters

  • M. E. Castro
  • D. P. Boisvert
  • E. O. Treiber
  • J. A. Lunt
  • P. S. Allen
Conference paper

Abstract

Imaging with nuclear magnetic resonance (NMR) is a sensitive indicator of the location and extent of brain edema [1, 2]. Indeed, preliminary studies indicate that NMR imaging gives better definition of the extent and mass effects of edema than is achievable at present with X-ray computed tomography (CT) [1, 3]. CT gives information only on tissue density (i.e., the coefficient of linear X-ray absorption), whereas proton NMR provides information related to the density of mobile hydrogen and to its relaxation behavior; i.e., the longitudinal (T1) and transverse (T2) relaxation times. The corresponding relaxation rates are given as 1/T1 and 1/T2.

Key words

Nuclear magnetic resonance brain edema proton-relaxation cerebrospinal fluid albumin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bydder GM, Steiner RE, Young IR, Hall AS, Thomas DJ, Marshall J, Pallis CA, Legg NJ (1982) Clinical NMR imaging of the brain: 140 cases. Am J Roentgenol 139:215–236Google Scholar
  2. 2.
    Brant-Zawadzki M, Davis PL, Crooks LE, Mills CM, Norman D, Newton TH, Sheldon P, Kaufman L (1983) NMR demonstration of cerebral abnormalities: comparison with CT. Am J Roentgenol 140:847–854Google Scholar
  3. 3.
    Randell CP, Collins AG, Young IR, Haywood R, Thomas DJ, McDonell MJ, Orr JS, Bydder GM, Steiner RE (1983) Nuclear magnetic resonance imaging of posterior fossa tumors. Am J Roentgenol 141:489–496Google Scholar
  4. 4.
    Bakay L, Kurland RJ, Parrish RG, Lee JC, Peng RJ, Bartkowski HM (1975) Nuclear magnetic resonance studies in normal and edematous brain tissue. Exp Brain Res 23:241–248PubMedCrossRefGoogle Scholar
  5. 5.
    Bartkowski HM, Bederson J, Nishimura M, Moon K, Pitts LH (1983) Nuclear magnetic resonance imaging and spectroscopy in experimental cerebral edema: proceedings of a symposium. Society of Magnetic Resonance in Medicine, second annual meeting, San FranciscoGoogle Scholar
  6. 6.
    Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Yoshizaki K (1982) Proton nuclear magnetic resonance studies on brain edema. J Neurosurg 56:747–752PubMedCrossRefGoogle Scholar
  7. 7.
    Go KG, Edzes HT (1975) Water in brain edema. Observations by the pulsed nuclear magnetic resonance technique. Arch Neurol 32:462–465Google Scholar
  8. 8.
    Klatzo I (1967) Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26:1–14PubMedCrossRefGoogle Scholar
  9. 9.
    Hazlewood CF (1979) A review of the significance and understanding of the physical properties of cell-associated water. In: Drost-Hansen W, Clegg J (eds) Cell-associated water. Academic, New York, pp 165–259Google Scholar
  10. 10.
    De Vré RM (1979) The NMR studies of water in biological systems. Prog Biophys Mol Biol 35:103–134Google Scholar
  11. 11.
    Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Inst 29:688–691CrossRefGoogle Scholar
  12. 12.
    Milhorat TH (1975) The third circulation revisited. J Neurosurg 42:628–645PubMedCrossRefGoogle Scholar
  13. 13.
    Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 213:1031–1038PubMedGoogle Scholar
  14. 14.
    Fung BM, McGaughy TW (1974) The state of water in muscle as studied by pulsed NMR. Biochim Biophys Acta 343:663–673PubMedGoogle Scholar
  15. 15.
    Hazlewood CF, Nichols BL, Chang DC, Brown B (1971) On the state of water in developing muscle: a study of the major phase of ordered water in skeletal muscle and its relationship to sodium concentration. Johns Hopkins Med J 129:117–131Google Scholar
  16. 16.
    Pappius HM, McCann WP (1969) Effects of steroids on cerebral edema in cats. Arch Neurol 20:207–216PubMedGoogle Scholar
  17. 17.
    Jähde E, Rajewsky MF, Baumgärtl H (1982) pH distribution in transplanted neural tumors and normal tissues of BDIX rats as measured with pH microelectrodes. Cancer Res 43:1498–1504Google Scholar
  18. 18.
    Fung BM, Puon PS (1981) Nuclear magnetic resonance transverse relaxation in muscle water. Biophys J 33:27–37PubMedCrossRefGoogle Scholar
  19. 19.
    Saryan LA, Hollis DP, Economov JS, Eggleston JC (1974) Nuclear magnetic resonance studies of cancer IV. Correlation of water with tissue relaxation times. J Natl Cancer Inst 52:599–602PubMedGoogle Scholar
  20. 20.
    Fung BM (1977) Correlation of relaxation time with water content in muscle and brain tissues. Biochim Biophys Acta 497:317–322PubMedGoogle Scholar
  21. 21.
    Kirikuta IC, Simpläcneau V (1975) Tissue water content and nuclear magnetic resonance in normal and tumor tissues. Cancer Res 35:1164–1167Google Scholar
  22. 22.
    Weinstein MA, Modic MT, Pavlicek W, Keyser CK (1984) Nuclear magnetic resonance for the examination of brain tumors. Sem Roentgenol 19:139–147CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • M. E. Castro
    • 1
  • D. P. Boisvert
  • E. O. Treiber
  • J. A. Lunt
  • P. S. Allen
  1. 1.Departments of SurgeryUniversity of AlbertaEdmontonCanada

Personalised recommendations