Brain Edema pp 447-453 | Cite as

Quantification of Blood-Brain-Barrier Permeability Following Varying Periods of Severe Temporary Cerebral Ischemia

  • P. Picozzi
  • N. V. Todd
  • H. A. Crockard
  • R. R. Russell


Ischemic brain edema follows a complex pattern: water begins to accumulate early after an ischemic insult without major disruption of the blood-brain barrier (BBB), but with time a vasogenic component is added [4, 7]. Alteration in BBB permeability is known to be faster after restoration of blood flow than in permanent ischemia [4]. This causes an extravasation of plasma protein into the tissue and a further accumulation of water in the brain. The damage to the cerebral vessels following recirculation, as reflected by the BBB disruption, is related to the duration of the ischemic period [4, 6]. We have used an experimental model of reversible cerebral ischemia to investigate and quantify the changes in brain water and BBB permeability at the end of a fixed interval of reperfusion following different periods of ischemia.


Specific Gravity Brain Edema Ischemic Insult Ischemic Period Permanent Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blasberg RG, Gazedam J, Patlak CS, Fenstermacher JD (1980) Quantitative autoradiographic studies of brain edema and a comparison of multi-isotope autoradiographic technique. In: Cervós-Navarro J, Ferszt R (eds) Brain edema. Raven, New York, pp 255–270 (Advances in neurology, vol 28)Google Scholar
  2. 2.
    Blasberg RG, Fenstermacher JD, Patlak CS (1983) Transport of alpha-aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32PubMedCrossRefGoogle Scholar
  3. 3.
    Crockard A, Iannotti F, Hunstock AT, Smith RD, Harris RJ, Symon L (1980) Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 11:494–498PubMedCrossRefGoogle Scholar
  4. 4.
    Fujimoto T, Walker JT, Spatz M, Klatzo I (1976) Pathophysiologic aspects of ischemic edema. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, Berlin Heidelberg New York, pp 171–180CrossRefGoogle Scholar
  5. 5.
    Hossmann KA, Bothe HW, Bodsch W, Paschen W (1983) Pathophysiological aspects of blood-brain barrier disturbances in experimental brain tumours and brain abscesses. In: Hossmann KA, Klatzo I (eds) Cerebrovascular transport mechanisms. Springer, Berlin Heidelberg New York, pp 89–102 (Acta Neuropathol, suppl 8).CrossRefGoogle Scholar
  6. 6.
    Ito U, Ohno K, Nakamura R, Suganuma F, Inaba Y (1979) Brain edema during ischemia and after restoration of blood flow. Stroke 10:542–547PubMedCrossRefGoogle Scholar
  7. 7.
    Klatzo I (1967) Neuropathological aspects of brain edema: Presidential address. J Neuropathol Exp Neurol 26:1–14PubMedCrossRefGoogle Scholar
  8. 8.
    Marmarou A, Poll W, Shulman K, Bhagavan H (1978) A simple gravimetric technique for measurement of cerebral edema. J Neurosurg 49:530–537PubMedCrossRefGoogle Scholar
  9. 9.
    Todd NV, Crockard HA, Ross Russell RW, Picozzi P (1984) Cerebral blood flow in the four-vessel occlusion model. Stroke 15:579 (letter)Google Scholar
  10. 10.
    Tyson GW, Teasdale GM, Graham DI, McCulloch J (1982) Cerebrovascular permeability following MCA occlusion in the rat. The effect of halothane-induced hypotension. J Neurosurg 57:186–196PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • P. Picozzi
    • 1
  • N. V. Todd
  • H. A. Crockard
  • R. R. Russell
  1. 1.Institute of Neurosurgery, First Medical SchoolUniversity of NaplesNaplesItaly

Personalised recommendations