The Differentiation of Cell Types in the Vertebrate CNS

  • S. Hockfield
  • K. Frederiksen
  • R. Mckay
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


The mechanisms which generate differences between cell types have been a major problem in biology. Every tissue in a eukaryote is made up of a mixture of cell types. The intrinsic molecular properties of these cell types and the interaction between cells gives rise to the specialized functions played by each tissue in an organism. A wide range of newly developed methods are now employed to study the biochemistry of cellular differentiation in eukaryotes.


Neural Tube Lateral Geniculate Nucleus Germinal Zone Axon Elongation Antigen Positive Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguayo AJ, Bray GM, Perkins CM, Duncan D (1979) In: Aspects of developmental biology. Soc Neurosci Symp 4: 361–383Google Scholar
  2. Alvarado-Mallart R, Sotelo C (1984) Dev Biol 103: 378PubMedCrossRefGoogle Scholar
  3. Cajal S Ramon (1972) Histologie du Systeme Nerveux Consejo Superior de Investigaciones Científicas, Instituto Ramon y Cajal, MadridGoogle Scholar
  4. Chung SH, Cooke J (1978) Proc R Soc Lond 201: 335PubMedCrossRefGoogle Scholar
  5. Cold Spring Harbor Symp Quant Biol (1983) Vol 48Google Scholar
  6. Dahl D, Rueger D, Bignami A (1981) Eur J Cell Biol 24: 191PubMedGoogle Scholar
  7. Galfre G, Howe SC, Milstein C, Butcher GW, Howard JC (1977) Nature 266: 550PubMedCrossRefGoogle Scholar
  8. Harris W (1980) J Comp Neurol 194: 303–130PubMedCrossRefGoogle Scholar
  9. Hendry SHC, Hoekfield S, Jones EG, McKay R (1984) Nature 307: 267PubMedCrossRefGoogle Scholar
  10. Hoekfield S, McKay R (1983a) J Neurosci 3: 369Google Scholar
  11. Hockfield S, McKay R (1983b) Proc Natl Acad Sci 80: 5758PubMedCrossRefGoogle Scholar
  12. Hockfield S, McKay R (1985) J Neurosci 5: 3310PubMedGoogle Scholar
  13. Hockfield S, McKay RD, Hendry SHC, Jones EG (1983) Cold Spring Harbor Symp Quant Biol 48: 877PubMedGoogle Scholar
  14. Hockfield S, Sur M, Frost D, McKay R (1985) Assoc Vision Res Ophthalmol Abstr 26: 287Google Scholar
  15. Hubel DH, Wiesel TN (1970) J Physiol 206: 419PubMedGoogle Scholar
  16. Hubel DH, Wiesel TN, LeVay S (1977) Phil Trans Rox Soc Lond (B) 278: 377CrossRefGoogle Scholar
  17. Johansen J, Hockfield S, McKay R (1984) J Comp Neurol 226: 263PubMedCrossRefGoogle Scholar
  18. Jones EG, Schreyer DJ, Wise SP (1982) Prog Brain Res 57: 361PubMedCrossRefGoogle Scholar
  19. Kalil R, Worden I (1978) J Comp Neurol 178: 469PubMedCrossRefGoogle Scholar
  20. Kratz KE, Sherman SM, Kalil R (1979) Science 203: 1353PubMedCrossRefGoogle Scholar
  21. Lance-Jones C, Landmesser L (1980) J Physiol 302: 559PubMedGoogle Scholar
  22. Levitt P, Rakic P (1980) J Comp Neurol 193: 815PubMedCrossRefGoogle Scholar
  23. Levitt P, Cooper ML, Rakic P (1981) J Neurosci 1: 27PubMedGoogle Scholar
  24. McKay R, Hockfield S (1982) Proc Natl Acad Sei 79: 6747CrossRefGoogle Scholar
  25. McKay R, Hockfield S, Johansen J, Frederiksen K, Thompson J (1983) Science 222: 788PubMedCrossRefGoogle Scholar
  26. Nordlander RH, Singer JF, Beck R, Singer M (1981) J Comp Neurol 199: 535PubMedCrossRefGoogle Scholar
  27. Ogren MP, McKay R, Schiller PH, Maunsell JHR, Hockfield S (1985) Assoc Vision Res Ophthalmol Abstr 26: 163Google Scholar
  28. Rakic P (1971) J Comp Neurol 141:283PubMedCrossRefGoogle Scholar
  29. Rakic P (1976) Nature 261: 467CrossRefGoogle Scholar
  30. Rakic P (1981) Trends Neurosci 4: 184CrossRefGoogle Scholar
  31. Sidman RL (1970) In: Schmitt FO (ed) The neurosciences-second study program. Rockefeller Univ Press, N.Y., pp 100–116Google Scholar
  32. Sidman RL, Miele IL, Fader N (1959) Exp Neurol 1: 322PubMedCrossRefGoogle Scholar
  33. Singer M, Nordlander RH, Egar M (1979) J Comp Neurol 185: 1–22PubMedCrossRefGoogle Scholar
  34. Silver J, Sidman RL (1980) J Comp Neurol 189: 101PubMedCrossRefGoogle Scholar
  35. Spemann H (1938) Embryonic development and induction. Hafner NYGoogle Scholar
  36. Sur M, Hockfield S, McAvoy M, Garraghty P, Kritzer M, McKay R (1984) Soc Nuurosci Abstr 10: 297Google Scholar
  37. Tapscott S, Bennett G, Toyama Y, Kleinbart F, Holtzer H (1981) Dev Biol 86: 40PubMedCrossRefGoogle Scholar
  38. Vaughn JE, Grieshaber JA (1973) J Comp Neurol 148: 177PubMedCrossRefGoogle Scholar
  39. Wiesel TN, Hubel DH (1963a) J Neurophysiol 26: 978PubMedGoogle Scholar
  40. Wiesel TN, Hubel DH (1963b) J Neurophysiol 26: 1003PubMedGoogle Scholar
  41. Wiesel TN, Hubel DH (1965) J Neurophysiol 28: 1029PubMedGoogle Scholar
  42. Windle WF, Baxter RF (1936) J Comp Neurol 63: 189CrossRefGoogle Scholar
  43. Zipser B, McKay R (1981) Nature 289: 549PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • S. Hockfield
    • 1
  • K. Frederiksen
    • 2
  • R. Mckay
    • 2
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  2. 2.Whitaker College and Department of Biology, E25-435Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations