Skip to main content

Regulation of Synapse-specific Genes

  • Conference paper
Molecular Aspects of Neurobiology

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

In its distinctive form and specialized function the postsynaptic apparatus of the neuromuscular junction has many of the characteristics of an organelle; a tissue-specific one to be sure. Like other organelles, the junctional apparatus is formed and maintained by genetically programmed mechanisms which are modulated by environmental cues. For example, embryonic myotubes and denervated adult fibers assemble synaptic specializations under the influence of nerve terminals, and once innervated, a muscle will not easily form additional synapses. Thus, regulatory signals must pass between nerve and muscle to insure the formation and proper maintenance of the synapse. Recognition of the similarities between the synapse and other organelles has prompted us to consider the possibility that the genetic expression of components of the synapse is regulated by a common and synapse specific mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg DK, Hall ZW (1975) Loss of a-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm in vivo and organ culture. J Physiol (Lond) 252: 771–789

    CAS  Google Scholar 

  • Bloch RJ, Hall ZW (1983) Cytoskeletal components of the vertebrate neuromusclular junction:

    Google Scholar 

  • Vinculin, a-actinin, and filamin. J Cell Biol 97:217–223

    Google Scholar 

  • Buc-Caron MH, Nystrom P, Fischbach GD (1983) Induction of acetylcholine receptor synthesis and aggregation: partial purification of low-molecular-weight activity. Dev Biol 95: 378–386

    Article  PubMed  CAS  Google Scholar 

  • Caravatti M, Minty A, Robert B, Montarras D, Weydert A, Cohen A, Daubas P, Buchingham M (1982) Regulation of muscle gene expression: the accumulation of messenger RNA’s coding for muscle-specific proteins during myogenesis in a mouse cell line. J Mol Biol 160: 59–76

    Article  PubMed  CAS  Google Scholar 

  • Couteaux R (1973) Motor end plate structure: In: Bourne GH (ed) The structure and function of muscle, vol II. Academic, New York, p 483

    Google Scholar 

  • Covault J, Sanes JR (1985) Neural cell adhesion molecule ( N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sd USA 82: 4544–4548

    Google Scholar 

  • Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59:165– 226

    Google Scholar 

  • Hall ZW, Roizin MP, Gu Y, Gorin PD (1983) A developmental change in the immunological properties of the acetylcholine receptors at the rat neuromuscular junction. Cold Spring Harbor Symp Quant Biol 40: 263–274

    Google Scholar 

  • Klarsfeld A, Devillers-Thiery A, Giraudat J, Changeux J-P (1984) A single gene codes for the nicotinic acetylcholine receptor a-subunit in Torpedo marmorata: Structural and developmental implications. EMBO J 3: 35–41

    Google Scholar 

  • La Polla RJ, Mixter Mayne K, Davidson N (1984) Isolation and characterization of a cDNAclone for the complete protein coding region of the 6 subunit of the mouse acetylcholine receptor. Proc Natl Acad Sci USA 81: 7970–7974

    Article  Google Scholar 

  • Massoulie J, Bon S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 5: 57–106

    Article  PubMed  CAS  Google Scholar 

  • Merlie JP, Sanes JR (to be published) Acetylcholine receptor mRNA is concentrated in synaptic regions of adult muscle fibres Merli JP, Sebbane R, Gardner S, Lindstrom J (1983a) cDNA clone for the a subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc Natl Acad Sci USA 80:3845– 3849

    Google Scholar 

  • Merlie JP, Sebbane R, Gardner S, Olson E, Lindstrom J (1983b) The regulation of acetylcholine receptor expression in mammalian muscle. Cold Spring Harbor Symp Quant Biol 48: 135–145

    PubMed  CAS  Google Scholar 

  • Merlie JP, Isenberg K, Russell S, Sanes JR (1984) Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J Cell Biol 99: 332–335

    Article  PubMed  CAS  Google Scholar 

  • Nef P, Mauron A, Stalder R, Alliod C, Ballivet M (1984) Structure, linkage, and sequence of the two genes encoding the 8 and y subunits of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 81: 7975: 7979

    Google Scholar 

  • Noda M, Furutani Y, Takahashi H, Toyosato M, Tanabe T, Shimizu S, Kikyotani S, Kayano T, Hirose T, Inayama S, Numa S (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor. Nature 305: 818–823

    Article  PubMed  CAS  Google Scholar 

  • Olson EN, Glaser L, Merlie JP, Sebbane R, Lindstrom J (1983) Regulation of surface expression of acetylcholine receptors in response to serum and cell growth in the BC3H-1 mouse cell line. J Biol Chem 258: 13946–13953

    PubMed  CAS  Google Scholar 

  • Salpeter MM, Harris RJ (1983) Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction. J Cell Biol 96: 1791–1785

    Article  Google Scholar 

  • Sanes JR, Feldman DH, Cheney JM, Lawrence JC Jr (1984) Brain extract induces synaptic characteristics in the basal lamina of cultured myotubes. J Neurosci 4: 464–473

    PubMed  CAS  Google Scholar 

  • Shibahara S, Kubo T, Perski HS, Takahashi H, Noda M, Numa S (1985) Cloning and sequence analysis of human genomic DNA encoding y subunit precursor of muscle acetylcholine receptor. Eur J Biochem 146: 15–22

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merlie, J.P., Sanes, J.R. (1986). Regulation of Synapse-specific Genes. In: Montalcini, R.L., Calissano, P., Kandel, E.R., Maggi, A. (eds) Molecular Aspects of Neurobiology. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70690-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70690-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70692-9

  • Online ISBN: 978-3-642-70690-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics