Molecular Cloning of Receptors for Acetylcholine

  • J. Boulter
  • K. Evans
  • S. Evans
  • P. Gardner
  • D. Goldman
  • S. Heinemann
  • W. Luyten
  • G. Martin
  • P. Mason
  • J. Patrick
  • D. Treco
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The nicotinic acetylcholine receptor at the vertebrate neuromuscular junction has provided an excellent model both for studies of ligand-gated ion channels and for studies of neural regulation of the synthesis and properties of constituents of the neuromuscular junction. Research in many laboratories studying the biochemical and biophysical properties of the receptor has led to our current view of the receptor molecule (for review see Cold Spring Harbor Symposium on Quantitative Biology, Vol. XLVIII). The results of this research have also provided the basis for another more recent assault on the structure and regulation of the acetylcholine receptor. In this work the emphasis has been on the isolation of recombinant DNA molecules coding for the polypeptides that comprise the receptor oligomer. The nucleotide sequences of these DNA molecules provided the amino acid sequence of each of the four receptor subunits (Noda et al. 1983) and analysis of these sequences has provided support for various models for the disposition of receptor sequences across the membrane (Claudio et al. 1983) and for the location (Noda et al. 1983) of the acetylcholine binding site.

Keywords

Oligomer Polypeptide Choline Leucine Acetylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballivet M, Nef P, Stalder R, Fulpius B (1983) Cold Spring Harbor Symp Quant Biol 48: 83–87PubMedGoogle Scholar
  2. Boulter J, Luyten W, Evans K, Mason P, Ballivet M, Goldman D, Martin G, Heinemann S, Patrick J (1985) J Neurosci 5: 2545–2552PubMedGoogle Scholar
  3. Claudio T, Ballivet M, Patrick J, Heinemann S (1983) Proc Natt Acad Sei 80: 1111–1115CrossRefGoogle Scholar
  4. Goldman D, Boulter J, Heinemann S, Patrick J (1985) J Neurosci 5: 2553–25587PubMedGoogle Scholar
  5. Jacob MH, Berg DK (1983) J Neurosci 3: 260–271PubMedGoogle Scholar
  6. La Polla RJ, Mixter-Mayne K, Davidson N (1984) Proc Natl Acad Sei USA 81: 7970–7974CrossRefGoogle Scholar
  7. Merlie JP, Sebbane R, Gardner S, Lindstrom J (1983a) Proc Natl Acad Sci 80: 3845PubMedCrossRefGoogle Scholar
  8. Merlie JP, Sebbane R, Gardner S, Olson E, Lindstrom J (1983b) Cold Spring Harbor Symp Quant Biol XLVII135Google Scholar
  9. Mitsuka M, Hatanake H (1983) J Neurosci 3: 1785PubMedGoogle Scholar
  10. Noda M, Takahashi H, Tanabe T, Toxosato M, Kikyotani S, Furutani Y, Hirose T, Takashima H, Inyama S, Miyata T, Numa W (1983) Nature (Lond) 302:528–532Google Scholar
  11. Patrick J, Stallcup W (1977) Proc Natl Acad Sci 74: 4689PubMedCrossRefGoogle Scholar
  12. Patrick J, McMillan J, Wolfson M, O’Brien JC (1977) J Biol Chem 252: 2143PubMedGoogle Scholar
  13. Smith MA, Margiotta JF, Berg DK (1983) J Neurosci 3: 2395–2407PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. Boulter
  • K. Evans
  • S. Evans
  • P. Gardner
  • D. Goldman
  • S. Heinemann
  • W. Luyten
  • G. Martin
  • P. Mason
  • J. Patrick
  • D. Treco
    • 1
  1. 1.The Salk InstituteSan DiegoUSA

Personalised recommendations