Acute and Chronic Pathomorphological Reactions to Cord Injury

  • H. Schneider


The complex pathomorphological aspects of spinal cord injury suggest the contribution of different and overlapping factors. The different aspects of the vulnerability of the spinal cord are summarized. It seems to be justified to differentiate between arterial, capillary and venous lesions. The traumatic myelopathy is characterized by the microcirculatory failure at the injured segment and increased permeability and impaired drainage of the postcapillary and venous vessels within and beyond the impact site.

The primary traumatic lesions consist of direct damage to all structures of the injured level of the spinal cord. The autodestructive and progressive involvement of the microvasculature in the central gray matter is characteristic of the early post-traumatic lesions, leading to central hemorrhagic necrosis and focal ischemia. The edema formation and the following edematous necrosis of the central white matter (predominantly in the ventral parts of the dorsal columns) indicates impaired venous drainage as the decisive pathological factor in the delayed posttraumatic phase.

The acute and chronic morphological sequelae of spinal cord injury as the cause of conduction failure for somatosensory evoked potentials involve at least two general problems of spinal cord pathology: first the pathological reactions and the lesion patterns of the white matter, second the vascular factors contributing to the traumatic malacia of the cord.

The essential anatomical picture of spinal cord injury is that of contusion, laceration and compression, either alone or in combination. The morphological changes in the cord after blunt injury depend on the type, extent and dynamic of trauma. The cord suffers first from the direct injury to axons, myelin sheaths, neurons and blood vessels. These primary lesions are followed by a chain of events leading to focal ischemia, breakdown of the microcirculation, edema and, finally, hemorrhagic necrosis of the cord. The reparative phase varies considerably. The posttraumatic myelopathies like arachnoiditis or syringomyelia become manifest months and years after the incident.


Spinal Cord Spinal Cord Injury Gray Matter Anterior Spinal Artery Hemorrhagic Necrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamkiewicz A (1881) Die Blutgefäße des menschlichen Rückenmarkes. I. Die Gefäße der Rückenmarkssubstanz. S-B Akad Wiss Wien, Math-Nat Kl Abt 3, 84:469–502Google Scholar
  2. Adamkiewicz A (1882) Die Blutgefäße des menschlichen Rückenmarkes. II. Die Gefäße der Rückenmarksoberfläche. S-B Akad Wiss Wien, Math-Nat Kl Abt 3, 85:101–130Google Scholar
  3. Adams H (1982) Diffuse axonal injury due to nonmissile head injury in humans. Ann Neurol 12: 557–562PubMedCrossRefGoogle Scholar
  4. Batson OV (1957) The vertebral vein system. Am J Roentgenol 78:195–212Google Scholar
  5. Bolton B (1932) The blood supply of the human spinal cord. J Neurol Psychiatry 2:137–148CrossRefGoogle Scholar
  6. Bresnahan J, King JS, Martin GF, Yashon D (1976) A neuroanatomical analysis of spinal cord injury in the rhesus monkey. J Neurol Sci 28:521–542PubMedCrossRefGoogle Scholar
  7. Clemens HJ (1961) Die Venensysteme der menschlichen Wirbelsäule. De Gruyter, BerlinGoogle Scholar
  8. Corbin JL (1961) Anatomie et pathologie artérielle de la moëlle. Masson, ParisGoogle Scholar
  9. Decker RE, Stein HL, Epstein JA (1975) Complete embolization of artery of Adamkiewicz to obliterate an intramedullary arteriovenous aneurysm. J Neurosurg 43:486–489PubMedCrossRefGoogle Scholar
  10. Di Chiro G, Wener L (1973) Angiography of the spinal cord. A review of contemporary techniques and applications. J Neurosurg 39:1–29CrossRefGoogle Scholar
  11. Dohrmann GJ, Wagner FC Jr, Bucy PC (1971) The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey. J Neurosurg 35:263–271PubMedCrossRefGoogle Scholar
  12. Doppmann JL (1975) The mechanism of ischemia in anteroposterior compression of the spinal cord. Invest Radiol 10:543–551CrossRefGoogle Scholar
  13. Doppmann JL, Girton M (1976) Angiographic study of the effect of laminectomy in the presence of acute anterior epidural masses. J Neurosurg 45:195–202CrossRefGoogle Scholar
  14. Ducker T (1976) Experimental injury of the spinal cord. In: Handbook of clinical neurology, vol 25 (Injuries of the spine and spinal cord). North-Holland, Amsterdam Oxford New York, pp 9-26Google Scholar
  15. Ducker T, Kindt G, Kempe G (1971) Pathological findings in acute experimental spinal cord trauma. J Neurosurg 25:700–707Google Scholar
  16. Fairholm DJ, Turnbull IM (1971) Microangiographic study of experimental spinal cord injuries. J Neurosurg 35:277–286PubMedCrossRefGoogle Scholar
  17. Fried LC, Aparicio O (1973) Experimental ischemia of the spinal cord. Histologic studies after anterior spinal artery occlusion. Neurology (Minneap) 23:289–293Google Scholar
  18. Gillilan LA (1958) The arterial blood supply of the human spinal cord. J Comp Neurol 110:75–103PubMedCrossRefGoogle Scholar
  19. Gillilan LA (1970) Veins of the spinal cord. Neurology (Minneap) 20:860–868Google Scholar
  20. Goodman JH, Bingham WG Jr, Hunt WE (1976) Ultrastructural blood-brain barrier alterations and edema formation in acute spinal cord trauma. J Neurosurg 44:418–423PubMedCrossRefGoogle Scholar
  21. Griffiths IR (1975) Vasogenic edema following acute and chronic spinal cord compression in the dog. J Neurosurg 42:155–165PubMedCrossRefGoogle Scholar
  22. Griffiths IR, McCulloch MC (1983) Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks. J Neurol Sci 58:335–349PubMedCrossRefGoogle Scholar
  23. Griffiths IR, Miller R (1974) Vascular permeability to protein and vasogenic edema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22:291–304PubMedCrossRefGoogle Scholar
  24. Hayashi N, Green BA, Gonzalez-Carvajal M, Mora J, Veraar P (1983a) Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. Part 1: Oxygen metabolism and neuronal function. J Neurosurg 58:516–525PubMedCrossRefGoogle Scholar
  25. Hayashi N, Green BA, Gonzalez-Carvajal M, Mora J, Veraar P (1983b) Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. Part 2: Relation to segmental level. J Neurosurg 58:526–530PubMedCrossRefGoogle Scholar
  26. Herren RY, Alexander L (1939) Sulcal and intrinsic blood vessels of human spinal cord. Arch Neurol Psychiat 41:678–691Google Scholar
  27. Hukuda S, Wilson CB (1972) Experimental cervical myelopathy: Effects of compression and ischemia on the canine cervical cord. J Neurosurg37:631–652PubMedCrossRefGoogle Scholar
  28. Ikeda H, Ushio Y, Hayakawa T, Mogami H (1980) Edema and circulatory disturbance in the spinal cord compressed by epidural neoplasms in rabbits. J Neurosurg 52:203–209PubMedCrossRefGoogle Scholar
  29. Jellinger K (1966) Zur Orthologie und Pathologie der Rückenmarksdurchblutung. Springer, Wien New YorkGoogle Scholar
  30. Jellinger K (1967) Spinal cord arteriosclerosis and progressive vascular myelopathy. J Neurol Neurosurg Psychiatry 30:195–206PubMedCrossRefGoogle Scholar
  31. Jellinger K (1976) Neuropathology of spinal cord injuries. Hand Clin Neurology 25:43–121Google Scholar
  32. Kadyi H (1889) Über die Blutgefäße des menschlichen Rückenmarkes. Gubrynowicz und Schmidt, LembergGoogle Scholar
  33. Killen DA, Forster JH (1966) Spinal cord injury as a complication of contrast angiography. Surgery 59:969–981PubMedGoogle Scholar
  34. Kobrine AI, Doyle TF, Martins AN (1975) Local spinal cord blood flow in experimental traumatic myelopathy. J Neurosurg 42:144–149PubMedCrossRefGoogle Scholar
  35. Kobrine AI (1980) Relative vulnerability of the brain and spinal cord to ischemia. J Neurol Sci 45:65–72PubMedCrossRefGoogle Scholar
  36. Margolis G, Griffin AT, Kenan PD, Tindall GT, Riggins R, Fort L (1959) Contrast medium injury to the spinal cord. The role of altered circulatory dynamics. J Neurosurg 16:390–406PubMedCrossRefGoogle Scholar
  37. Nemecek S, Petr R, Suba P, Roszival V, Melka O (1977) Longitudinal extension of oedema in experimental spinal cord injury. Acta Neurochir37:7–16CrossRefGoogle Scholar
  38. Ramsey R, Doppmann JL (1973) The effects of epidural masses on spinal cord blood flow. Radiology 107:99–103PubMedGoogle Scholar
  39. Sandier AN, Tator CH (1976a) Review of the effect of spinal cord trauma on the vessels and blood flow in the spinal cord. J Neurosurg 45:638–646CrossRefGoogle Scholar
  40. Sandier AN, Tator CH (1976c) Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J Neurosurg 45:660–676CrossRefGoogle Scholar
  41. Sasaki S, Schneider H, Renz S (1978) Microcirculatory disturbances during the early phase following experimental spinal cord trauma in the rat. Adv Neurol 20:423–431PubMedGoogle Scholar
  42. Schneider H (1980a) Kreislaufstörungen und Gefäßprozesse des Rückenmarks. In: Doerr W, Seifert S, Uehlinger E (Hrsg) Spezielle pathologische Anatomie, Vol 13/I: Pathologie des Nervensystems I. Springer, Berlin Heidelberg New YorkGoogle Scholar
  43. Schneider H (1980b) Das sogenannte Verschlußsyndrom der Arteria spinalis anterior. Verh Dtsch Ges Neurol 1:667–670Google Scholar
  44. Schneider H, Dralle J (1973) Ultrastructural changes in the rat spinal cord after temporary occlusion of the thoracic aorta. Acta Neuropathol (Berl) 26:301–315CrossRefGoogle Scholar
  45. Schneider H, Renz S, Stoltenburg G, Sasaki S (1974) Microcirculatory disturbances in the canine spinal cord produced by contrast media in aortography. In: Cervós-Navarro J (ed) Pathology of cerebral microcirculation. De Gruyter, Berlin, pp 256–266Google Scholar
  46. Shimomura Y, Hukuda S, Mizuno S (1968) Experimental study of ischemic damage to the cervical spinal cord. J Neurosurg 28:565–581PubMedCrossRefGoogle Scholar
  47. Suh TH, Alexander L (1939) Vascular system of the human spinal cord. Arch Neurol Psychiatry (Chic) 41/4:659–677Google Scholar
  48. Turnbull IM (1971) Microvasculature of the human spinal cord. J Neurosurg 35:141–147PubMedCrossRefGoogle Scholar
  49. Turnbull IM (1972) Blood supply of the spinal cord. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 12. Elsevier, Amsterdam Oxford New York, pp 478–491Google Scholar
  50. Tveten L (1976e) Spinal cord vascularity. V. The venous drainage of the spinal cord in the rat. Acta Radiol (Diagn) (Stockh) 17:653–662Google Scholar
  51. Tveten L, Loeken AC (1975) Spinal cord vascularity. A histopathological and angiographic study of the effects of thoracic-lumbar aortic mobilization in the rat. Neuropathol Appl Neurobiol 1:379–395Google Scholar
  52. Ushio Y, Posner R, Shapiro WR (1977a) Experimental spinal cord compression by epidural neoplasms. Neurology (Chic) 27:422–429Google Scholar
  53. Wagner FC, Dohrmann G, Bucy P (1971) Histopathology of transitory traumatic paraplegia in the monkey. J Neurosurg 35:272–276PubMedCrossRefGoogle Scholar
  54. Zuber WF, Gaspar HR, Rothschild PD (1970) The anterior spinal artery syndrome— a complication of abdominal aortic surgery: Report of five cases and review of the literature. Ann Surg 172:909–915PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Schneider
    • 1
  1. 1.Zentralinstitut für Seelische GesundheitMannheim 1Germany

Personalised recommendations