Skip to main content

Acute and Chronic Pathomorphological Reactions to Cord Injury

  • Conference paper
Spinal Cord Monitoring

Summary

The complex pathomorphological aspects of spinal cord injury suggest the contribution of different and overlapping factors. The different aspects of the vulnerability of the spinal cord are summarized. It seems to be justified to differentiate between arterial, capillary and venous lesions. The traumatic myelopathy is characterized by the microcirculatory failure at the injured segment and increased permeability and impaired drainage of the postcapillary and venous vessels within and beyond the impact site.

The primary traumatic lesions consist of direct damage to all structures of the injured level of the spinal cord. The autodestructive and progressive involvement of the microvasculature in the central gray matter is characteristic of the early post-traumatic lesions, leading to central hemorrhagic necrosis and focal ischemia. The edema formation and the following edematous necrosis of the central white matter (predominantly in the ventral parts of the dorsal columns) indicates impaired venous drainage as the decisive pathological factor in the delayed posttraumatic phase.

The acute and chronic morphological sequelae of spinal cord injury as the cause of conduction failure for somatosensory evoked potentials involve at least two general problems of spinal cord pathology: first the pathological reactions and the lesion patterns of the white matter, second the vascular factors contributing to the traumatic malacia of the cord.

The essential anatomical picture of spinal cord injury is that of contusion, laceration and compression, either alone or in combination. The morphological changes in the cord after blunt injury depend on the type, extent and dynamic of trauma. The cord suffers first from the direct injury to axons, myelin sheaths, neurons and blood vessels. These primary lesions are followed by a chain of events leading to focal ischemia, breakdown of the microcirculation, edema and, finally, hemorrhagic necrosis of the cord. The reparative phase varies considerably. The posttraumatic myelopathies like arachnoiditis or syringomyelia become manifest months and years after the incident.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamkiewicz A (1881) Die Blutgefäße des menschlichen Rückenmarkes. I. Die Gefäße der Rückenmarkssubstanz. S-B Akad Wiss Wien, Math-Nat Kl Abt 3, 84:469–502

    Google Scholar 

  • Adamkiewicz A (1882) Die Blutgefäße des menschlichen Rückenmarkes. II. Die Gefäße der Rückenmarksoberfläche. S-B Akad Wiss Wien, Math-Nat Kl Abt 3, 85:101–130

    Google Scholar 

  • Adams H (1982) Diffuse axonal injury due to nonmissile head injury in humans. Ann Neurol 12: 557–562

    Article  PubMed  CAS  Google Scholar 

  • Batson OV (1957) The vertebral vein system. Am J Roentgenol 78:195–212

    CAS  Google Scholar 

  • Bolton B (1932) The blood supply of the human spinal cord. J Neurol Psychiatry 2:137–148

    Article  Google Scholar 

  • Bresnahan J, King JS, Martin GF, Yashon D (1976) A neuroanatomical analysis of spinal cord injury in the rhesus monkey. J Neurol Sci 28:521–542

    Article  PubMed  CAS  Google Scholar 

  • Clemens HJ (1961) Die Venensysteme der menschlichen Wirbelsäule. De Gruyter, Berlin

    Google Scholar 

  • Corbin JL (1961) Anatomie et pathologie artérielle de la moëlle. Masson, Paris

    Google Scholar 

  • Decker RE, Stein HL, Epstein JA (1975) Complete embolization of artery of Adamkiewicz to obliterate an intramedullary arteriovenous aneurysm. J Neurosurg 43:486–489

    Article  PubMed  CAS  Google Scholar 

  • Di Chiro G, Wener L (1973) Angiography of the spinal cord. A review of contemporary techniques and applications. J Neurosurg 39:1–29

    Article  Google Scholar 

  • Dohrmann GJ, Wagner FC Jr, Bucy PC (1971) The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey. J Neurosurg 35:263–271

    Article  PubMed  CAS  Google Scholar 

  • Doppmann JL (1975) The mechanism of ischemia in anteroposterior compression of the spinal cord. Invest Radiol 10:543–551

    Article  Google Scholar 

  • Doppmann JL, Girton M (1976) Angiographic study of the effect of laminectomy in the presence of acute anterior epidural masses. J Neurosurg 45:195–202

    Article  Google Scholar 

  • Ducker T (1976) Experimental injury of the spinal cord. In: Handbook of clinical neurology, vol 25 (Injuries of the spine and spinal cord). North-Holland, Amsterdam Oxford New York, pp 9-26

    Google Scholar 

  • Ducker T, Kindt G, Kempe G (1971) Pathological findings in acute experimental spinal cord trauma. J Neurosurg 25:700–707

    Google Scholar 

  • Fairholm DJ, Turnbull IM (1971) Microangiographic study of experimental spinal cord injuries. J Neurosurg 35:277–286

    Article  PubMed  CAS  Google Scholar 

  • Fried LC, Aparicio O (1973) Experimental ischemia of the spinal cord. Histologic studies after anterior spinal artery occlusion. Neurology (Minneap) 23:289–293

    CAS  Google Scholar 

  • Gillilan LA (1958) The arterial blood supply of the human spinal cord. J Comp Neurol 110:75–103

    Article  PubMed  CAS  Google Scholar 

  • Gillilan LA (1970) Veins of the spinal cord. Neurology (Minneap) 20:860–868

    CAS  Google Scholar 

  • Goodman JH, Bingham WG Jr, Hunt WE (1976) Ultrastructural blood-brain barrier alterations and edema formation in acute spinal cord trauma. J Neurosurg 44:418–423

    Article  PubMed  CAS  Google Scholar 

  • Griffiths IR (1975) Vasogenic edema following acute and chronic spinal cord compression in the dog. J Neurosurg 42:155–165

    Article  PubMed  CAS  Google Scholar 

  • Griffiths IR, McCulloch MC (1983) Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks. J Neurol Sci 58:335–349

    Article  PubMed  CAS  Google Scholar 

  • Griffiths IR, Miller R (1974) Vascular permeability to protein and vasogenic edema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22:291–304

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Green BA, Gonzalez-Carvajal M, Mora J, Veraar P (1983a) Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. Part 1: Oxygen metabolism and neuronal function. J Neurosurg 58:516–525

    Article  PubMed  CAS  Google Scholar 

  • Hayashi N, Green BA, Gonzalez-Carvajal M, Mora J, Veraar P (1983b) Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. Part 2: Relation to segmental level. J Neurosurg 58:526–530

    Article  PubMed  CAS  Google Scholar 

  • Herren RY, Alexander L (1939) Sulcal and intrinsic blood vessels of human spinal cord. Arch Neurol Psychiat 41:678–691

    Google Scholar 

  • Hukuda S, Wilson CB (1972) Experimental cervical myelopathy: Effects of compression and ischemia on the canine cervical cord. J Neurosurg37:631–652

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Ushio Y, Hayakawa T, Mogami H (1980) Edema and circulatory disturbance in the spinal cord compressed by epidural neoplasms in rabbits. J Neurosurg 52:203–209

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1966) Zur Orthologie und Pathologie der Rückenmarksdurchblutung. Springer, Wien New York

    Google Scholar 

  • Jellinger K (1967) Spinal cord arteriosclerosis and progressive vascular myelopathy. J Neurol Neurosurg Psychiatry 30:195–206

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1976) Neuropathology of spinal cord injuries. Hand Clin Neurology 25:43–121

    Google Scholar 

  • Kadyi H (1889) Über die Blutgefäße des menschlichen Rückenmarkes. Gubrynowicz und Schmidt, Lemberg

    Google Scholar 

  • Killen DA, Forster JH (1966) Spinal cord injury as a complication of contrast angiography. Surgery 59:969–981

    PubMed  CAS  Google Scholar 

  • Kobrine AI, Doyle TF, Martins AN (1975) Local spinal cord blood flow in experimental traumatic myelopathy. J Neurosurg 42:144–149

    Article  PubMed  CAS  Google Scholar 

  • Kobrine AI (1980) Relative vulnerability of the brain and spinal cord to ischemia. J Neurol Sci 45:65–72

    Article  PubMed  CAS  Google Scholar 

  • Margolis G, Griffin AT, Kenan PD, Tindall GT, Riggins R, Fort L (1959) Contrast medium injury to the spinal cord. The role of altered circulatory dynamics. J Neurosurg 16:390–406

    Article  PubMed  CAS  Google Scholar 

  • Nemecek S, Petr R, Suba P, Roszival V, Melka O (1977) Longitudinal extension of oedema in experimental spinal cord injury. Acta Neurochir37:7–16

    Article  CAS  Google Scholar 

  • Ramsey R, Doppmann JL (1973) The effects of epidural masses on spinal cord blood flow. Radiology 107:99–103

    PubMed  CAS  Google Scholar 

  • Sandier AN, Tator CH (1976a) Review of the effect of spinal cord trauma on the vessels and blood flow in the spinal cord. J Neurosurg 45:638–646

    Article  Google Scholar 

  • Sandier AN, Tator CH (1976c) Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J Neurosurg 45:660–676

    Article  Google Scholar 

  • Sasaki S, Schneider H, Renz S (1978) Microcirculatory disturbances during the early phase following experimental spinal cord trauma in the rat. Adv Neurol 20:423–431

    PubMed  CAS  Google Scholar 

  • Schneider H (1980a) Kreislaufstörungen und Gefäßprozesse des Rückenmarks. In: Doerr W, Seifert S, Uehlinger E (Hrsg) Spezielle pathologische Anatomie, Vol 13/I: Pathologie des Nervensystems I. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schneider H (1980b) Das sogenannte Verschlußsyndrom der Arteria spinalis anterior. Verh Dtsch Ges Neurol 1:667–670

    Google Scholar 

  • Schneider H, Dralle J (1973) Ultrastructural changes in the rat spinal cord after temporary occlusion of the thoracic aorta. Acta Neuropathol (Berl) 26:301–315

    Article  CAS  Google Scholar 

  • Schneider H, Renz S, Stoltenburg G, Sasaki S (1974) Microcirculatory disturbances in the canine spinal cord produced by contrast media in aortography. In: Cervós-Navarro J (ed) Pathology of cerebral microcirculation. De Gruyter, Berlin, pp 256–266

    Google Scholar 

  • Shimomura Y, Hukuda S, Mizuno S (1968) Experimental study of ischemic damage to the cervical spinal cord. J Neurosurg 28:565–581

    Article  PubMed  CAS  Google Scholar 

  • Suh TH, Alexander L (1939) Vascular system of the human spinal cord. Arch Neurol Psychiatry (Chic) 41/4:659–677

    Google Scholar 

  • Turnbull IM (1971) Microvasculature of the human spinal cord. J Neurosurg 35:141–147

    Article  PubMed  CAS  Google Scholar 

  • Turnbull IM (1972) Blood supply of the spinal cord. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 12. Elsevier, Amsterdam Oxford New York, pp 478–491

    Google Scholar 

  • Tveten L (1976e) Spinal cord vascularity. V. The venous drainage of the spinal cord in the rat. Acta Radiol (Diagn) (Stockh) 17:653–662

    CAS  Google Scholar 

  • Tveten L, Loeken AC (1975) Spinal cord vascularity. A histopathological and angiographic study of the effects of thoracic-lumbar aortic mobilization in the rat. Neuropathol Appl Neurobiol 1:379–395

    Google Scholar 

  • Ushio Y, Posner R, Shapiro WR (1977a) Experimental spinal cord compression by epidural neoplasms. Neurology (Chic) 27:422–429

    CAS  Google Scholar 

  • Wagner FC, Dohrmann G, Bucy P (1971) Histopathology of transitory traumatic paraplegia in the monkey. J Neurosurg 35:272–276

    Article  PubMed  Google Scholar 

  • Zuber WF, Gaspar HR, Rothschild PD (1970) The anterior spinal artery syndrome— a complication of abdominal aortic surgery: Report of five cases and review of the literature. Ann Surg 172:909–915

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, H. (1985). Acute and Chronic Pathomorphological Reactions to Cord Injury. In: Schramm, J., Jones, S.J. (eds) Spinal Cord Monitoring. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70687-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70687-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70689-9

  • Online ISBN: 978-3-642-70687-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics