Skip to main content

On the Principles of Postsynaptic Action of Neuromuscular Blocking Agents

  • Chapter
New Neuromuscular Blocking Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 79))

Abstract

In this chapter, the evidence concerning the mechanism of postsynaptic action of neuromuscular blocking agents will be discussed. Although it could certainly be argued that the important facts about tubocurarine were all known long before the voltage clamp was invented, it could not be argued that the reasons for its behaviour were understood. The emphasis in this chapter will be on the fundamental molecular effects of the drugs, rather than on the phenomena which they are empirically observed to produce. These limitations on the scope of this chapter reduce considerably the work that will be dealt with in any detail, because the amount of knowledge about molecular mechanisms of action is surprisingly small. This statement may seem odd in view of the vast amount of work that has been done on the neuromuscular junction, and on drugs that affect it. But inspection of the literature soon reveals that almost all of this work is done by methods that are not capable of giving rigorous information about mechanisms. For example, a blocking drug is often described as “competitive” for no better reason than that it fails to produce a depolarization; indeed, even membrane potential often is not directly observed, so perhaps one should say that it fails to behave as though it were producing a depolarization. This sort of statement can surely not be defended by any pharmacologist as an adequate definition of what is meant by “competitive”. Similarly, the details of the mechanisms of action of those blockers that produce a depolarization have, with a few exceptions, yet to be investigated by modern electrophysiological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Colquhoun D (1984) Current relaxations with high agonist concentrations. Do acetylcholine and suberyldicholine block ion channels in frog muscle? J Physiol (Lond) 341:22–23P

    Google Scholar 

  • Adams DJ, Dwyer TM, Hille B (1980) The permeability of endplate channels to monovalent and divalent metal cations. J Gen Physiol 75:493–510

    PubMed  CAS  Google Scholar 

  • Adams PR (1975 a) Kinetics of agonist conductance changes during hyperpolarization at frog endplates. Br J Pharmacol 53:308

    PubMed  CAS  Google Scholar 

  • Adams PR (1975b) A study of desensitization using voltage clamp. Pflugers Arch 360:135–144

    PubMed  CAS  Google Scholar 

  • Adams PR (1976) Drug blockade of open end-plate channels. J Physiol (Lond) 260:531–552

    CAS  Google Scholar 

  • Adams PR (1977) Voltage jump analysis of procaine action at the frog end-plate. J Physiol (Lond) 268:291–318

    CAS  Google Scholar 

  • Adams PR (1980) Aspects of synaptic potential generation. In: Pinsker HM (ed) Information processing in the nervous system. Raven New York

    Google Scholar 

  • Adams PR (1981) Acetylcholine receptor kinetics. J Membr Biol 58:161–174

    PubMed  CAS  Google Scholar 

  • Adams PR, Sakmann B (1978) Decamethonium both opens and blocks endplate channels. Proc Natl Acad Sci USA 75:2994–2998

    PubMed  CAS  Google Scholar 

  • Adrian RH, Marshall MW (1977) Sodium current in mammalian muscle. J Physiol (Lond) 268:223–250

    CAS  Google Scholar 

  • Albuquerque EX, Adler M, Spivak CE, Aguayo L (1980) Mechanism of nicotinic channel activation and blockade. Ann N Y Acad Sci 358:204–238

    PubMed  CAS  Google Scholar 

  • Anderson CR, Stevens CF (1973) Voltage clamp analysis of acetylcholine produced endplate current fluctuations at frog neuromuscular junction. J Physiol (Lond) 235:655–691

    CAS  Google Scholar 

  • Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413–437

    PubMed  CAS  Google Scholar 

  • Armstrong DL, Lester HA (1979) The kinetics of tubocurarine action and restricted diffusion within the synaptic cleft. J Physiol (Lond) 294:365–386

    CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Ascher P, Large WA, Rang HP (1979) Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J Physiol (Lond) 295:139–170

    CAS  Google Scholar 

  • Barnard EA, Coates V, Dolly JO, Mallick B (1977) Binding of a-bungarotoxin and cholinergic ligands to acetylcholine receptors in the membrane of skeletal muscle. Cell Biol Int Rep 1:99–106

    PubMed  CAS  Google Scholar 

  • Blackman JG (1959) The pharmacology of depressor bases. PhD Thesis, University of New Zealand

    Google Scholar 

  • Blackman JG (1970) Dependence on membrane potential of the blocking action of hexa-methonium at a sympathetic ganglionic synapse. Proc University of Otago Med Sch 48:4–5

    Google Scholar 

  • Blackman JG, Gauldie RW, Milne RJ (1975) Interaction of competitive antagonists: the anti-curare action of hexamethonium and other skeletal neuromuscular junction. Br J Pharmacol 54:91–100

    PubMed  CAS  Google Scholar 

  • Boheim G, Hanke W, Barrantes FJ, Eibl H, Sakmann B, Fels G, Maelicke A (1981) Agonist-activated ionic channels in acetylcholine receptor reconstituted into plainer lipid bilayers. Proc Natl Acad Sci USA 78:3586–3590

    PubMed  CAS  Google Scholar 

  • Bonner R, Barrantes FJ, Jovin TM (1976) Kinetics of agonist-induced intrinsic fluorescence changes in membrane-bound acetylcholine receptor. Nature 263:429–431

    PubMed  CAS  Google Scholar 

  • Bowman WC (1980) Pharmacology of neuromuscular function. Wright, Bristol

    Google Scholar 

  • Boyd ND, Cohen JB (1980 a) Kinetics of binding of [3H]acetylcholine and [3H]carbamyl-choline to Torpedo postsynaptic membranes: slow conformational transition of the cholinergic receptor. Biochemistry 19:5344–5353

    PubMed  CAS  Google Scholar 

  • Boyd ND, Cohen JB (1980 b) Kinetics of binding of [3H]acetylcholine to Torpedo postsynaptic membranes: association and dissociation rate constants by rapid mixing and ultrafiltration. Biochemistry 19:5353–5358

    PubMed  CAS  Google Scholar 

  • Bryant SH, Morales-Aguilera A (1971) Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol (Lond) 219:367–383

    CAS  Google Scholar 

  • Burns BD, Paton WDM (1951) Depolarization of the motor end-plate by decamethonium and acetylcholine. J Physiol (Lond) 115:41–73

    CAS  Google Scholar 

  • Case R, Creese R, Dixon WJ, Massey FJ, Taylor DB (1977) Movement of labelled decamethonium in muscle fibres of the rat. J Physiol (Lond) 272:283–294

    CAS  Google Scholar 

  • Cash DJ, Aoshima H, Hess GP (1981) Acetylcholine-induced cation across cell membranes and inactivation of the acetylcholine receptor: chemical kinetic measurements in the millisecond time region. Proc Natl Acad Sci USA 78:3318–3322

    PubMed  CAS  Google Scholar 

  • Castillo J del, Katz B (1957 a) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B Biol Sci 146:369–381

    Google Scholar 

  • Castillo J del, Katz B (1957 b) A study of curare action with an electrical micro-method. Proc R Soc Lond B Biol Sci 146:339–356

    Google Scholar 

  • Claudio T, Ballivet M, Patrick J, Heinemann S (1983) Nucleotide and deduced aminoacid sequences of Torpedo californica acetylcholine receptor y subunit. Proc Natl Acad Sci USA 80:1111–1115

    PubMed  CAS  Google Scholar 

  • Cohen JB, Weber M, Changeux J-P (1974) Effects of local anesthetics and calcium on the interaction of cholinergic ligands with the nicotinic receptor protein from Torpedo marmorata. Mol Pharmacol 10:904–932

    CAS  Google Scholar 

  • Colquhoun D (1973) The relation between classical and cooperative models for drug action. In: Rang HP (ed) Drug receptors. Macmillan, London, pp 149–182

    Google Scholar 

  • Colquhoun D (1975) Mechanisms of drug action at the voluntary muscle end-plate. Annu Rev Pharmacol 15:307–325

    PubMed  CAS  Google Scholar 

  • Colquhoun D (1978) Noise: a tool for drug receptor investigation. In: Bolis L, Straub RW (eds) Cell membrane receptors for drugs and hormones. Raven, New York

    Google Scholar 

  • Colquhoun D (1979) The link between drug binding and response: theories and observations. In: O’Brien RD (ed) The receptors: a comprehensive treatise. Plenum, New York

    Google Scholar 

  • Colquhoun D (1980) Competitive block and ion channel block as mechanisms of antagonist action on the skeletal muscle end-plate. Adv Biochem Psychopharmacol 21:67–80

    PubMed  CAS  Google Scholar 

  • Colquhoun D (1981a) How fast do drugs work? Trends Pharmacol Sci 2:212–217

    CAS  Google Scholar 

  • (Reprinted in Lamble J (ed) Towards understanding receptors. Elsevier, Amsterdam, 1981)

    Google Scholar 

  • Colquhoun D (1981b) The kinetics of conductance changes at nicotinic receptors of the muscle end-plate and of ganglia. In: Birdsall N (ed) Drug receptors and their effectors. Macmillan, London

    Google Scholar 

  • Colquhoun D, Hawkes AG (1977) Relaxation and fluctuations of membrane currents that flow through drug-operated ion channels. Proc R Soc Lond [Biol] B199:231–262

    CAS  Google Scholar 

  • Colquhoun D, Hawkes AG (1981) On the stochastic properties of single ion channels. Proc Roy Soc Lond [Biol] B211:205–235

    CAS  Google Scholar 

  • Colquhoun D, Hawkes AG (1982) On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos Trans R Soc Lond [Biol] B300:l-59

    Google Scholar 

  • Colquhoun D, Hawkes AG (1983) The principles of the stochastic interpretation of ion channel mechanisms. In: Sakmann B, Neher E (eds) Single channel recording. Plenum, New York

    Google Scholar 

  • Colquhoun D, Rang HP (1976) Effects of inhibitors on the binding of iodinated a-bungaro-toxin to acetylcholine receptors in rat muscle. Mol pharmacol 12:519–535

    PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1981) Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294:464–466

    PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1983) Bursts of openings in transmitter-activated ion channels. In: Sakmann B, Neher E (eds) Single channel recording. Plenum, New York

    Google Scholar 

  • Colquhoun D, Sheridan RE (1981) The modes of action of gallamine. Proc R Soc Lond [Biol] B211:181–203

    CAS  Google Scholar 

  • Colquhoun D, Sheridan RE (1982) The effect of tubocurarine competition on the kinetics of agonist action on the nicotine receptor. Br J Pharmacol 75:77–86

    PubMed  CAS  Google Scholar 

  • Colquhoun D, Dionne VE, Steinbach JH, Stevens CF (1975) Conductance of channels openend by acetylcholine-like drugs in muscle end-plate. Nature 253:204–206

    PubMed  CAS  Google Scholar 

  • Colquhoun D, Large WA, Rang HP (1977) An analysis of the action of a false transmitter at the neuromuscular junction. J Physiol (Lond) 266:361–395

    CAS  Google Scholar 

  • Colquhoun D, Dreyer F, Sheridan RE (1979) The actions of tubocurarine at the frog neuromuscular junction. J Physiol (Lond) 293:247–284

    CAS  Google Scholar 

  • Conti-Tronconi BM, Gotti CM, Hunkapiller MW, Raftery MA (1982) Mammalian muscle acetylcholine receptor: a supramolecular structure formed by four related proteins. Science 218:1227–1229

    PubMed  CAS  Google Scholar 

  • Creese R, Franklin GI, Mitchell LD (1976) Two mechanisms for spontaneous recovery from depolarising drugs in rat muscle. Nature 261:416–417

    PubMed  CAS  Google Scholar 

  • Creese R, Franklin GI, Mitchell LD (1977) Sodium entry in rat diaphragm induced by depolarizing drugs. J Physiol (Lond) 272:295–316

    CAS  Google Scholar 

  • Creese R, Humphrey PPA, Mitchell LD (1983) Recovery from decamethonium rat muscle and denervated guinea pig diaphragm. J Physiol (Lond) 334:365–377

    CAS  Google Scholar 

  • Cull-Candy SG (1981) Synaptic noise and transmitter action at nerve muscle junctions. Trends Neurosci 4:1–3

    CAS  Google Scholar 

  • Cull-Candy SG, Miledi R, Trautmann A (1979) End-plate currents and acetylcholine noise at normal and myasthenic human end-plates. J Physiol (Lond) 287:247–265

    CAS  Google Scholar 

  • Dionne VE, Steinbach JH, Stevens CF (1978) An analysis of the dose-response relationship at voltage-clamped frog neuromuscular junctions. J Physiol (Lond) 281:421–444

    CAS  Google Scholar 

  • Dreyer F, Muller K-D, Peper K, Sterz R (1976) The M omohyoideus of the mouse as a convenient mammalian muscle preparation. Pflugers Arch 367:115–122

    PubMed  CAS  Google Scholar 

  • Dreyer F, Peper K, Sterz R (1978) Determination of dose-responses curves by quantitative ionophoresis at the frog neuromuscular junction. J Physiol (Lond) 281:395–419

    CAS  Google Scholar 

  • Dunn SMJ, Blanchard SG, Raftery MA (1980) Kinetics of carbamylcholine binding to membrane-bound acetylcholine receptor monitored by fluorescence changes of a covalently bound probe. Biochemistry 19:5645–5652

    PubMed  CAS  Google Scholar 

  • Duval A, Leoty C (1978) Ionic currents in mammalian fast skeletal muscle. J Physiol (Lond) 278:403–423

    CAS  Google Scholar 

  • Feltz A, Trautmann A (1982) Desensitization at the frog neuromuscular junction: a biphasic process. J Physiol (Lond) 322:257–272

    CAS  Google Scholar 

  • Feltz A, Large WA, Trautmann A (1977) Analysis of atropine action at the frog neuromuscular junction. J Physiol (Lond) 269:109–130

    CAS  Google Scholar 

  • Ferry CB, Marshall AR (1973) Anti-curare effect of hexamethonium at the mammalian neuromuscular junction. Br J Pharmacol 47:353–362

    PubMed  CAS  Google Scholar 

  • Fletcher P, Forrester T (1975) The effect of curare on the release of acetylcholine from mammalian motor nerve terminals and an estimate of quantum content. J Physiol (Lond) 251:131–144

    CAS  Google Scholar 

  • Freeman SE, Turner RJ (1972) Agonist-antagonist interaction at the cholinergic receptor of denervated diaphragm. Aust J Exp Biol Med Sci 50:21–34

    PubMed  CAS  Google Scholar 

  • Gage PW (1976) Generation of end-plate potentials. Physiol Rev 56:177–247

    PubMed  CAS  Google Scholar 

  • Gage PW, Hamill OP (1981) Effects of anesthetics on ion channels in synapses. In: Porter R (ed) Neurophysiology IV. University Park Press, Baltimore (International Review of Physiology vol 25)

    Google Scholar 

  • Gage PW, McBurney RN, Van Helden D (1978) Octanol reduces end-plate channel lifetime. J Physiol (Lond) 274:279–298

    CAS  Google Scholar 

  • Gardner P, Ogden DC, Colquhoun D (1984) Conductances of single ion channels opened by cholinominetic agonists are indistinguishable. Nature 309:160–162

    PubMed  CAS  Google Scholar 

  • Ginsborg BL, Jenkinson DH (1976) Transmission of impulses from nerve to muscle. In: Zaimis E (ed) Neuromuscular junction. Springer, Berlin Heidelberg New York, pp 229–364 (Handbuch der experimentellen Pharmakologie, vol 42)

    Google Scholar 

  • Ginsborg BL, Stephenson RP (1974) On the simultaneous action of two competitive antagonists. Br J Pharmacol 51:287–300

    CAS  Google Scholar 

  • Grunhagen H-H, Changeux J-P (1977) Fast kinetic studies on the interaction of cholinergic agonists with the membrane-bound acetylcholine receptor from Torpedo marmorata as revealed by quinacrine fluorescence. Eur J Biochem 80:225–242

    PubMed  CAS  Google Scholar 

  • Gurney AM, Rang HP (1984) The channel-blocking action of methonium compounds on rat submandibular ganglion cells. Br J Pharmacol 82:623–642

    PubMed  CAS  Google Scholar 

  • Gutfreund H (1972) Enzymes: physical principles. Wiley, London

    Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    PubMed  CAS  Google Scholar 

  • Hartzell HC, Kuffler SW, Yoshikami D (1975) Post-synaptic potentiation: interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J Physiol (Lond) 251:427–463

    CAS  Google Scholar 

  • Head SD (1983) Temperature and end-plate currents in rat diaphragm. J Physiol (Lond) 334:441–459

    CAS  Google Scholar 

  • Heidmann T, Changeux JP (1979 a) Fast kinetic studies on the interaction of fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. Eur J Biochem 94:255–279

    PubMed  CAS  Google Scholar 

  • Heidmann T, Changeux J-P (1979 b) Fast kinetic studies on the allosteric interactions between acetylcholine receptor and local anesthetic binding sites. Eur J Biochem 94:281–296

    PubMed  CAS  Google Scholar 

  • Hill AV (1909) The mode of action of nicotine and curari determined by the form of the contraction curve and the method of temperature coefficients. J Physiol (Lond) 39:361–373

    CAS  Google Scholar 

  • Hille B, Campbell DT (1976) An improved vaseline gap voltage clamp for skeletal muscle fibre. J Gen Physiol 67:265–293

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol (Lond) 148:127–160

    CAS  Google Scholar 

  • Hutter OF, Padsha SM (1959) Effect of nitrate and other ions on the membrane resistance of frog skeletal muscle. J Physiol (Lond) 146:117–132

    CAS  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon, Oxford

    Google Scholar 

  • Jenkinson DH (1960) The antagonism between tubocurarine and substances which depolarize the motor end-plate. J Physiol (Lond) 152:309–324

    CAS  Google Scholar 

  • Jenkinson DH, Terrar DA (1973) Influence of chloride ions on changes in membrane potential during prolonged application of carbachol to frog skeletal muscle. Br J Pharmacol 47:363–376

    PubMed  CAS  Google Scholar 

  • Jurss R, Prinz H, Maelicke A (1979) NBD-5-Acylcholine: Fluorescent analog of acetycho-line and agonist at the neuromuscular junction. Proc Natl Acad Sci USA 76:1064–1068

    PubMed  CAS  Google Scholar 

  • Karlin A (1980) Molecular properties of nicotinic acetylcholine receptors. Cell Surf Rev 6:191–260

    CAS  Google Scholar 

  • Kasai M, Changeux J-P (1971) In vitro excitation of purified membrane fragments by cholinergic agonists. I Pharmacological properties of the excitable membrane fragments. J Membrane Biol 6:1–23

    CAS  Google Scholar 

  • Katz B (1966) Nerve muscle and synapse. McGraw-Hill, New York

    Google Scholar 

  • Katz B, Miledi R (1970) Membrane noise produced by acetylcholine. Nature 226:962–963

    PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1972) The statistical nature of the acetylcholine potential and its molecular components. J Physiol (Lond) 224:665–699

    CAS  Google Scholar 

  • Katz B, Miledi R (1973) The binding of acetylcholine to receptors and its removal from the synaptic cleft. J Physiol (Lond) 231:549–574

    CAS  Google Scholar 

  • Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond [Biol] B196:59–72

    CAS  Google Scholar 

  • Katz B, Miledi R (1978) A re-examination of curare action at the motor end-plate. Proc R Soc Lond [Biol] B203:119–133

    Google Scholar 

  • Katz B, Thesleff S (1957) A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol [Lond] 138:63–80

    CAS  Google Scholar 

  • Kistler J, Stroud RM, Klymkowsky MW, Lalancette RA, Fairclough RH (1982) Structure and function of an acetylcholine receptor. Biophys J 37:371–383

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Yoshikami D (1975) The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetycholine at the neuromuscular synapse. J Physiol (Lond) 251:465–482

    CAS  Google Scholar 

  • Land BR, Salpeter EE, Salpeter MM (1980) Acetylcholine receptor site density affects the rising phase of miniature end-plate currents. Proc Natl Acad Sci USA 77:3736–3740

    PubMed  CAS  Google Scholar 

  • Land BR, Salpeter EE, Salpeter MM (1981) Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc Natl Acad Sci USA 78:7200–7204

    PubMed  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1402

    CAS  Google Scholar 

  • Lo MMS, Dolly JO, Barnard EA (1981) Molecular forms of the acetylcholine receptor from vertebrate muscles and Torpedo electric organ. Eur J Biochem 116:155–163

    PubMed  CAS  Google Scholar 

  • Magazanik LG, Vyskocil F (1973) Desensitization at the motor end-plate. In: Rang HP (ed) Drug receptors. Macmillan, London

    Google Scholar 

  • Magleby KL, Pallotta BS (1981) A study of desensitization of acetylcholine receptors using nerve-released transmitter in the frog. J Physiol (Lond) 316:225–250

    CAS  Google Scholar 

  • Magleby KL, Stevens CF (1972) A quantitative description of end-plate currents. J Physiol (Lond) 223:173–197

    CAS  Google Scholar 

  • Magleby KL, Pallotta BS, Terrar DA (1981) The effect of (+)-tubocurarine on neuromuscular transmission during repetitive stimulation in the rat mouse and frog. J Physiol (Lond) 312:97–113

    CAS  Google Scholar 

  • Manalis RS (1977) Voltage-dependent effect of curare at the frog neuromuscular junction. Nature 267:366–368

    PubMed  CAS  Google Scholar 

  • Marty A, Ascher P (1980) Les Modes d’action de la tubocurarine. In: La transmission neuromusculaire les mediateurs et le “milieu interieur”. Fondation Singer-Polignac. Masson, Paris, pp 89–100

    Google Scholar 

  • Matthews-Bellinger J, Salpeter MM (1978) Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol (Lond) 279:197–213

    CAS  Google Scholar 

  • McIntyre AR, King RE (1943) Contraction of denervated muscle produced by d-tubocurarine. Science 97:516

    PubMed  CAS  Google Scholar 

  • Neher E (1983) The charge carried by single channel currents of rat cultured muscle cells in the presence of local anaesthetics. J Physiol (Lond) 339:663–678

    CAS  Google Scholar 

  • Neher E, Sakmann B (1975) Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Nat Acad Sci USA 72:2140–2144

    PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    PubMed  CAS  Google Scholar 

  • Neher E, Steinbach JH (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol (Lond) 277:153–176

    CAS  Google Scholar 

  • Neher E, Stevens CF (1977) Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng 6:345–381

    PubMed  CAS  Google Scholar 

  • Nelson N, Anholt R, Lindstrom J, Montal M (1980) Reconstitution or purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc Natl Acad Sci USA 77:3057–3061

    PubMed  CAS  Google Scholar 

  • Neubig RR, Cohen JB (1979) Equilibrium binding of [3H]tubocurarine and [3H]acetylcholine by Torpedo postsynaptic membranes: stoichiometry and ligand interactions. Biochemistry 18:5464–5475

    PubMed  CAS  Google Scholar 

  • Neubig RR, Cohen JB (1980) Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: agonist dose-response relations measured at second and millisecond times. Biochemistry 19:2770–2779

    PubMed  CAS  Google Scholar 

  • Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Noma S (1982) Primary structure of a-subunit precursor of Torpedo cali-fornica acetylcholine receptor deduced from cDNA sequence. Nature 299:793–797

    PubMed  CAS  Google Scholar 

  • Ogden DC, Colquhoun D (1983) The efficacy of agonists at the frog neuromuscular junction studied with single channel recording. Pflügers Arch 399:246–248

    PubMed  CAS  Google Scholar 

  • Ogden DC, Siegelbaum SA, Colquhoun D (1981) Block of acetylcholine-activated ion channels by an uncharged local anaesthetic. Nature 289:596–598

    PubMed  CAS  Google Scholar 

  • Ogden DC, Siegelbaum SA, Colquhoun D (1986) Mechanisms of action of the uncharged local anaesthetic benzocaine (in preparation)

    Google Scholar 

  • Paton WDM, Rang HP (1965) The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig in relation to acetylcholine receptors. Proc R Soc Lond B Biol Sci 163:1–44

    PubMed  CAS  Google Scholar 

  • Paton WDM, Waud DR (1967) The margin of safety of neuromuscular transmission. J Physiol (Lond) 191:59–90

    CAS  Google Scholar 

  • Pennefather P, Quastel DMJ (1981) Relation between subsynaptic receptor blockade and response to quantal transmitter at the mouse neumuscular junction. J Gen Physiol 78:313–344

    PubMed  CAS  Google Scholar 

  • Pennefather P, Quastel DMJ (1982) Modification of dose-response curves by effector blockade and uncompetitive antagonism. Mol Pharmacol 22:369–380

    PubMed  CAS  Google Scholar 

  • Peper K, Bradley RJ, Dreyer F (1982) The acetylcholine receptor at the neuromuscular junction. Physiol Rev 62:1271–1340

    PubMed  CAS  Google Scholar 

  • Quast U, Schimerlik MI, Raftery MA (1979) Ligand-induced changes in membrane-bound acetylcholine receptor observed by ethidium fluorescence. II Stopped flow studies with agonists and antagonists. Biochemistry 18:1891–1901

    PubMed  CAS  Google Scholar 

  • Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1457

    PubMed  CAS  Google Scholar 

  • Rang HP (1982) The action of ganglion blocking drugs on the synaptic responses of rat submandibular ganglion cells. Br J Pharmacol 75:151–168

    PubMed  CAS  Google Scholar 

  • Rang HP, Ritter JM (1969) A new kind of drug antagonism: evidence that agonists cause a molecular change in acetylcholine receptors. Mol Pharmacol 5:394–411

    PubMed  CAS  Google Scholar 

  • Rang HP, Ritter JM (1970) On the mechanism of desensitization of cholinergic receptors. Mol Pharmacol 6:357–382

    PubMed  CAS  Google Scholar 

  • Rosenberry TL (1979) Quantitative simulation of endplate currents at neuromuscular junctions based on their reaction of acetylcholine with acetylcholine receptor and acetylcholinesterase. Biophys J 26:263–290

    PubMed  CAS  Google Scholar 

  • Ruff RL (1977) A quantitative analysis of local anaesthetic alteration of miniature end-plate currents and end-plate current fluctuations. J Physiol (Lond) 264:89–124

    CAS  Google Scholar 

  • Ruff RL (1982) The kinetics of local anaesthetic blockade of end-plate channels. Biophys J 37:625–631

    PubMed  CAS  Google Scholar 

  • Sakmann B, Adams PR (1979) Biophysical aspects of agonist action at frog end-plate. In: Jacob J (ed) Advances in pharmacology and therapeutics, vol 1: Receptors. Pergamon, Oxford, pp 81–90

    Google Scholar 

  • Sakmann B, Neher E (1983) Single channel recording. Plenum, New York

    Google Scholar 

  • Sakmann B, Patlak J, Neher E (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286:71–73

    PubMed  CAS  Google Scholar 

  • Schindler H, Quast U (1980) Functional acetylcholine receptor from Torpedo marmorata in planar membranes. Proc Natl Acad Sci USA 77:3052–3056

    PubMed  CAS  Google Scholar 

  • Schild HO (1949) pAx and competitive drug antagonism. Br J Pharmacol 4:277–280

    CAS  Google Scholar 

  • Sheridan RE, Lester HA (1975) Relaxation measurements on the acetylcholine receptor. Proc Natl Acad Sci USA 72:3496–3500

    PubMed  CAS  Google Scholar 

  • Sheridan RE, Lester HA (1977) Rates and equilibria at the acetylcholine receptor of Elec-trophorus electroplaques. J Gen Physiol 70:187–219

    PubMed  CAS  Google Scholar 

  • Shorr RG, Lyddiatt A, Lo MMS, Dolly JO, Barnard EA (1981) Acetylcholine receptor from mammalian skeletal muscle. Oligomeric forms and their subunit structure. Eur J Biochem 116:143–153

    PubMed  CAS  Google Scholar 

  • Sine S, Taylor P (1979) Functional consequences of agonist-mediated state transitions in the cholinergic receptor. Studies in cultured muscle cells. J Biol Chem 254:3315–3325

    PubMed  CAS  Google Scholar 

  • Sine SM, Taylor P (1980) The relationship between agonist occupation and the permeability response of the cholinergic receptor revealed by bound cobra α-toxin. J Biol Chem 255:10144–10156

    PubMed  CAS  Google Scholar 

  • Sine SM, Taylor P (1981) Relationship between reversible antagonist occupancy and the functional capacity of the acetylcholine receptor. J Biol Chem 256:6692–6699

    PubMed  CAS  Google Scholar 

  • Sine SM, Taylor P (1982) Local anesthetics and histrionicotoxin are allosteric inhibitors of the acetylcholine receptor. J Biol Chem 257:8106–8114

    PubMed  CAS  Google Scholar 

  • Steinbach AB (1968 a) Alteration by Xylocaine (lidocaine) and its derivatives of the time course of the end-plate potential. J Gen Physiol 52:144–161

    PubMed  CAS  Google Scholar 

  • Steinbach AB (1968 b) A kinetic model for the action of Xylocaine on receptors for acetylcholine. J Gen Physiol 52:162–180

    PubMed  CAS  Google Scholar 

  • Steinbach JH (1980) Activation of nicotinic acetylcholine receptors. Cell Surf Rev 6:119–156

    CAS  Google Scholar 

  • Stenlake JB (1979) Molecular interactions at the cholinergic receptor in neuromuscular blockade. Prog Med Chem 16:257–286

    PubMed  CAS  Google Scholar 

  • Stenlake JB (1980) Neuromuscular blocking agents. In: Wolff ME (ed) Alfred Burger’s medicinal chemistry, 4th edn. Wiley-Interscience. New York

    Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Br J Pharmacol 11:379–393

    CAS  Google Scholar 

  • Suarez-Kurtz G, Paulo LG, Fonteies MC (1969) Further studies on the neuromuscular effects of β-diethylaminoethyl-diphenylpropylacetate hydrochloride (SKF-525-A). Arch Int Pharmacodyn 177:185–195

    PubMed  CAS  Google Scholar 

  • Sugal N, Hughes R, Payne JP (1975) The effect of suxamethonium alone and its interaction with gallamine on the indirectly elicited tetanic and single twitch contractions of skeletal muscle in man during anaesthesia. Br J Clin Pharmacol 2:391–402

    Google Scholar 

  • Sugiyama H, Popot JL, Changeux JP (1976) Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. III Pharmacological desensitization in vitro of the receptor-rich membrane fragments by cholinergic agonists. J Mol Biol 106:485–496

    PubMed  CAS  Google Scholar 

  • Sumikawa K, Barnard EA, Dolly Jo (1982 a) Similarity of acetylcholine receptors of dener-vated, innervated and embryonic chicken muscles. Subunit compositions. Eur J Bio-chem 126:473–479

    CAS  Google Scholar 

  • Sumikawa K, Houghton M, Smith JC, Bell L, Richards BM, Barnard EA (1982 b) The molecular cloning and characterization of cDNA coding for the a subunit of the acetylcholine receptor. Nucleic Acids Res 10:5809–5822

    PubMed  CAS  Google Scholar 

  • Takeuchi A, Takeuchi N (1960) The permeability of end-plate membrane during the action of transmitter. J Physiol (Lond) 154:52–67

    CAS  Google Scholar 

  • Terrar DA (1974) Influence of SKF-525A congeners, strophanthidin and tissue-culture media on desensitization in frog skeletal muscle. Br J Pharmacol 51:259–268

    PubMed  CAS  Google Scholar 

  • Thesleff S (1955) The mode of neuromuscular block caused by acetylcholine, nicotine, de-camethonium and succinylcholine. Acta Physiol Scand 34:218–231

    CAS  Google Scholar 

  • Thron CD (1973) On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 9:1–9

    PubMed  CAS  Google Scholar 

  • Trautmann A (1982) Curare can open and block ionic channels associated with cholinergic receptors. Nature 298:272–275

    PubMed  CAS  Google Scholar 

  • Tyer MB (1978) Factors limiting the rate of termination of the neuromuscular blocking action of fazadinium dibromide. Br J Pharmacol 63:287–293

    Google Scholar 

  • Tzartos SJ, Lindstrom JM (1980) Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA 77:755–759

    PubMed  CAS  Google Scholar 

  • Van Maanen EF (1950) The antagonism between acetylcholine and the curare alkaloids D-tubocurarine, c-curarine-I, c-toxiferine-II and β-erythroidine in the rectus abdominis of the frog. J Pharmacol Exp Ther 99:255–264

    Google Scholar 

  • Wathey JC, Nass WM, Lester HA (1979) Numerical reconstruction of the quantal event at nicotinic synapses. Biophys J 27:145–164

    PubMed  CAS  Google Scholar 

  • Waud BE, Cheng MC, Waud DR (1973) Comparison of drug-receptor dissociation constants at the mammalian neuromuscular junction in the presence and absence of hal-othane. J Pharmacol Exp Ther 187:40–46

    PubMed  CAS  Google Scholar 

  • Waud DR (1967) The rate of action of competitive neuromuscular blocking agents. J Pharmacol Exp Ther 158:99–114

    PubMed  CAS  Google Scholar 

  • Weber M, Changeux J-P (1974) Binding of Naja nigricollis 3H-α-toxin to membrane fragments from Electrophorus and Torpedo electric organs. 2 Effect of cholinergic agonists and antagonists on the binding of the tritiated α-neurotoxin. Mol Pharmacol 10:15–34

    PubMed  CAS  Google Scholar 

  • Weber M, David-Pfeuty T, Changeux J-P (1975) Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedo marmorata. Proc Natl Acad Sci USA 72:3443–3447

    PubMed  CAS  Google Scholar 

  • Weiland G, Taylor P (1979) Ligand specificity of state transitions in the cholinergic receptor: behaviour of agonists and antagonists. Mol Pharmacol 15:197–212

    PubMed  CAS  Google Scholar 

  • Weiland G, Georgia B, Lappi S, Chignell CF, Taylor P (1977) Kinetics of agonist-mediated transitions in state of the cholinergic receptor. J Biol Chem 25:7648–7656

    Google Scholar 

  • Wray D (1980) Noise analysis and channels at the postsynaptic membrane of skeletal muscle. Prog Drug Res 24:9–56

    PubMed  CAS  Google Scholar 

  • Wray D (1981) Prolonged exposure to acetylcholine: noise analysis and channel inactiva-tion in cat tenuissimus muscle. J Physiol (Lond) 310:37–56

    CAS  Google Scholar 

  • Young AP, Sigman DS (1981) Allosteric effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein. I Stabilization of the high affinity state. Mol Pharmacol 20:498–505

    PubMed  CAS  Google Scholar 

  • Young AP, Sigman DS (1983) Conformational effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein: facilitation of the agonist-induced affinity conversion. Biochemistry 22:2155–2162

    PubMed  CAS  Google Scholar 

  • Zaimis E (1976) The neuromuscular junction: areas of uncertainty. In: Zaimis E (ed) Neuromuscular junction. Springer, Berlin Heidelberg New York, pp 1–21 (Handbuch der experimentellen Pharmakologie, vol 42)

    Google Scholar 

  • Zaimis E, Head S (1976) Depolarising neuromuscular blocking agents. In: Zaimis E (ed) Neuromuscular junction. Springer, Berlin Heidelberg New York, pp 365–419 (Handbook of experimental pharmacology, vol 42)

    Google Scholar 

  • Ziskind L, Dennis MJ (1978) Depolarising effect of curare on embryonic rat muscles. Nature 276:622–623

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Colquhoun, D. (1986). On the Principles of Postsynaptic Action of Neuromuscular Blocking Agents. In: Kharkevich, D.A. (eds) New Neuromuscular Blocking Agents. Handbook of Experimental Pharmacology, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70682-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70682-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70684-4

  • Online ISBN: 978-3-642-70682-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics