An Ectocellular Form of Acetylcholinesterase on the Plasma Membrane of Nerve Terminals in Torpedo Electric Organ

Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

In the present chapter, we will focus our attention on the presence of an amphiphilic, membrane-bound form of acetylcholinesterase which is localized at the external surface of nerve terminal plasma membranes in Torpedo electric organs. The experimental data have been described in detail (Li and Bon 1983) and similar results have been obtained by Morel and Dreyfus (1982). As described elsewhere in this volume by Vigny et al., acetylcholinesterase exists in multiple molecular forms. Therefore, we will first describe the polymorphism of acetylcholinesterase in Torpedo electric organs.

Keywords

Hydrolysis Sucrose Sedimentation Retina Trypsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allemand P, Bon S, Massoulid J, Vigny M (1981) The quaternary structure of chicken acetylcholinesterase and butyrylcholinesterase; effect of collagenase and trypsin. J Neurochem 38: 860–867CrossRefGoogle Scholar
  2. Anglister L, Silman I (1978) Molecular structure of elongated forms of electric eel acetylcholinesterase. J Mol Biol 125: 293–311PubMedCrossRefGoogle Scholar
  3. Bon S (1982) Molecular forms of acetylcholinesterase in developing Torpedo embryos. Neurochem Int 4: 577–585PubMedCrossRefGoogle Scholar
  4. Bon S, Massouliei J (1980) Collagen-tailed and hydrophobic components in Torpedo marmorata electric organ. Proc Natl Acad Sci USA 77: 4464–4468PubMedCrossRefGoogle Scholar
  5. Bon S, Huet M, Lemonnier M, Rieger F, Massoulid J (1976) Molecular forms of Electrophorus acetylcholinesterase; molecular weight and composition. Eur J Biochem 68: 523–530PubMedCrossRefGoogle Scholar
  6. Bon S, Vigny M, Massoulid J (1979) Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc Natl Acad Sci USA 76: 2546–2550PubMedCrossRefGoogle Scholar
  7. Doctor BP, Camp S, Gentry MK, Taylor S, Taylor P (1983) Antigenic and structural differences in the catalytic subunits of the molecular forms of acetylcholinesterase. Proc Natl Acad Sci USA 80: 5767–5771PubMedCrossRefGoogle Scholar
  8. Fox GQ, Richardson GP (1978) The developmental morphology of Torpedo marmorata-. Electric organ-myogenic phase. J Comp Neurol 179: 677–697PubMedCrossRefGoogle Scholar
  9. Fox GQ, Richardson GP (1979) The developmental morphology of Torpedo marmorata: electric organ-electrogenic phase. J Comp Neurol 185: 293–315PubMedCrossRefGoogle Scholar
  10. Futerman AH, Fiorini RM, Roth E, Michaelson DM, Low MG, Silman I (1984) Solubilization of membrane bound acetylcholinesterase by a phophatidylinositol-specific phospholipase C: enzymatic and physicochemical studies. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases. de Gruyter, Berlin, pp 99–113Google Scholar
  11. Gomez-Barriocanal J, Barat A, Escudero E, Rodriguez-Borrajo C, Ramirez G (1981) Solubilization of collagen-tailed acetylcholinesterase from chick retina: effect of different extraction procedures. J Neurochem 37: 1239–1249PubMedCrossRefGoogle Scholar
  12. Grassi J, Vigny M, Massoulid J (1982) Molecular forms of acetylcholinesterase in the bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J Neurochem 38: 457–469PubMedCrossRefGoogle Scholar
  13. Hall ZW (1973) Multiple forms of acetylcholinesterase and their distribution in endplate and non- endplate regions of rat diaphragm muscle. J Neurobiol 4: 343–361PubMedCrossRefGoogle Scholar
  14. Israel M, Manaranche R, Mastour-Franchon P, Morel N (1976) Isolation of pure cholinergic nerve-endings from electric organ of Torpedo marmorata. Biochem J 160: 113–115PubMedGoogle Scholar
  15. Lee SL, Taylor P (1982) Structural characterization of the asymmetric (17 + 13) S forms of acetylcholinesterase from Torpedo component peptides obtained by selective proteolysis and disulfide bonds reduction. J Biol Chem 20: 12292–12301Google Scholar
  16. Lee SL, Heinemann S, Taylor P (1982) Structural characterization of the asymmetric (17 + 13) S forms of acetylcholinesterase from Torpedo; analysis of subunit composition. J Biol Chem 20: 12283–12291Google Scholar
  17. Li ZY, Bon C (1983) Presence of a membrane-bound acetylcholinesterase form in a preparation of nerve-endings from Torpedo marmorata electric organ. J Neurochem 40: 338–349PubMedCrossRefGoogle Scholar
  18. Massoulid J (1984) Polymorphism of cholinesterases. In: Serratrice et al. (eds) Neuromuscular diseases. Raven, New York, pp 425–429Google Scholar
  19. Massoulid J, Bon S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 5: 57 — 106CrossRefGoogle Scholar
  20. Massoulie J, Bon S, Lazar M, Grassi J, Marsh D, Meflah K, Toutant JP, Vallette F, Vigny M (1984) The polymorphism of cholinesterases: classification of molecular forms; interactions and solubilization characteristics; metabolic relationships and regulations. In: Brzin M, Bernard EA, Sket D (eds) Cholinesterases. de Gruyter, Berlin, pp 73–97Google Scholar
  21. McMahan UJ, Sanes JR, Marshall LM (1978) Cholinesterase is associated with basal lamina at the neuromuscular junction. Nature (Lond) 271: 172–174CrossRefGoogle Scholar
  22. Morel N, Dreyfus P (1981) Association of acetylcholinesterase with the external surface of the presynaptic plasma membrane in Torpedo electric organ. Neurochem Int 4: 283–288CrossRefGoogle Scholar
  23. Morel N, Israel M, Manaranche R, Mastour-Frachon P (1977) Isolation of pure cholinergic nerve-endings from Torpedo electric organ. J Cell Biol 75: 43–55PubMedCrossRefGoogle Scholar
  24. Rosenberry TL, Richardson JM (1977) Structure of 18 S and 13 S acetylcholinesterase. Identification of collagen-like subunits that are linked by disulfide bond to catalytic subunits. Biochemistry 16: 3550–3558PubMedCrossRefGoogle Scholar
  25. Rosenberry TL, Scoggin DM, Dutta-Choudhury TA, Haas R (1984) Human erythrocyte acetyl-cholinesterase is an amphipathic form. In: Brzin M, Barnard EA, Sket D (eds) Cholinesterases. de Gruyter, Berlin, pp 155–172Google Scholar
  26. Silver A (1974) The biology of cholinesterases. North-Holland, AmsterdamGoogle Scholar
  27. Vigny M, Di Giamberardino L, Couraud JY, Rieger F, Koenig J (1976) Molecular forms of chicken acetylcholinesterase: effect of denervation. FEBS Lett 69: 277–280PubMedCrossRefGoogle Scholar
  28. Viratelle OM, Bernhard SA (1980) Major component of acetylcholinesterases in Torpedo electroplax is not basal lamina associated. Biochemistry 19: 4997–5007Google Scholar
  29. Weinberg GG, Hall ZW (1979) Junctional forms of acetylcholinesterase restored at nerve-free end-plate. Dev Biol 68: 631–635Google Scholar
  30. Witzemann V, Boustead C (1982) Change in acetylcholinesterase molecular forms during embryonic development of Torpedo marmorata. J Neurochem 39: 747–755PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • C. Bon
    • 1
  1. 1.Unité des Venins, Unité associée Pasteur/I.N.S.E.R.M. 285Institut PasteurParisFrance

Personalised recommendations