First Order Design: Optimization of the Configuration of a Network by Introducing Small Position Changes

  • K. R. Koch


Free networks only, i.e. networks for which the datum has to be defined, will be considered in the following. Thus, the property of these networks, especially the dependency of the covariance matrix of the estimated coordinates on the choice of the datum will be reviewed first. Estimable coordinates for the free nets will be obtained by means of projected parameters and it will be shown that these projections also give the transformations between different datums.


Positive Semidefinite Quadratic Programming Problem Geodetic Network Confidence Ellipse Rank Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberda, J.E.: Planning and optimization of networks: some general considerations.Bollettino di Geodesia e Science Affini, 33, 209–240, 1974Google Scholar
  2. Baarda, W.: S-transformations and criterion matrices. Netherlands Geodetic Commission, Publ. on Geodesy, 5, No.1, Delft 1973Google Scholar
  3. Bazaara, M.S. and C.M. Shetty: Nonlinear Programming. J.Wiley, New York 1979Google Scholar
  4. Fritsch, D.: Entwurf digitaler zweidimensionaler nichtrekursiver Filter Deutsche Geodätische Kommission, C, 275, München 1982Google Scholar
  5. Grafarend, E., H. Heister, R. Kelm, H. Kropff and B. Schaffrin: Optimierung geodätischer Meßoperationen. Wichmann, Karlsruhe 1979Google Scholar
  6. Koch, K.R.: Parameterschätzung und Hypothesentests in linearen Modellen Dümmler, Bonn 1980Google Scholar
  7. Koch, K.R.: O Deutsche Geodätische Kommission, B ptimization of the configuration of geodetic networks., 258/III, 82–89, München 1982 aGoogle Scholar
  8. Koch, K.R.: S-transformationsand projections for obtaining estimable parameters. In “Forty Years of Thought”, Anniversary Volume on the Occasion of Prof. Baarda’s 65th Birthday, 1, 136–144, Delft 1982 bGoogle Scholar
  9. Koch, K.R.: Die Wahl des Datums eines trigonometrischen Netzes bei Punkteinschaltungen. Zeitschrift für Vermessungswesen, 108, 104–111, 1983Google Scholar
  10. Lemke, C.E.: On complementary pivot theory. In “Mathematics of the Deci sion Sciences, Part 1]’, edited by G.B. Dantzig and A. F. Veinott, 95–114, American Mathematical Society, Providence 1968Google Scholar
  11. Liew, C.K. and J.K. Shim: A computer program for inequality constrained least-squares estimation. Econometrica, 46, 237, 1978CrossRefGoogle Scholar
  12. Pope, A.J.: Transformation of covariance matrices due to changes in minimal control (abstract). EOS, Transactions, American Geophysical Union, 52, 820, 1971Google Scholar
  13. Schaffrin, B.: Some proposals concerning the diagonal second order design of geodetic networks. Manuscripta Geodaetica, 6, 303–326, 1981Google Scholar
  14. Schaffrin, B., F. Krumm and D. Fritsch: Positivdiagonale Genauigkeitsoptimierung von Realnetzen über den Komplementaritäts-Algorithmus. In Ingenieurvermessung 80” edited by R. Conzett, H.J. Matthias, H. Schmid, 1, A 15/1 - A 15/19, Dümmler, Bonn 1981Google Scholar
  15. Schaffrin, B. and E.W. Grafarend: Kriterion-Matrizen II. Zweidimensionale homogene und isotrope geodätische Netze. Zeitschrift für Vermessungswesen, 107, 183–194, 1982Google Scholar
  16. Shapiro, J.F.: Mathematical Programming: Structures and Algorithms. J.Wiley, New York 1979Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. R. Koch

There are no affiliations available

Personalised recommendations