Continuous Networks I

  • E. W. Grafarend
  • F. W. Krumm
Conference paper


Criterion matrices/ideal variance — covariance matrices are constructed from continuous networks being observed by signal derivatives of first and second order. The method of constrained least- squares leads to differential equations up to fourth order, to characteristic boundary values and constraints according to the datum choice. Here only onedimensional networks on a line and on a circle are discussed. Their characteristic (modified) Green function is constructed and used for the computation of the variance — covariance function of adjusted mean signal functions. Finally numerical aspects originating fm the discrete nature of real observational series are discussed. In detail, the transformation of a criterion matrix into a network datum and its comparison with the variance — covariance matrix of an ideally configurated network is presented.


Green Function Covariance Function Continuous Network Geodetic Network Data Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benciolini, B. (1984) Continuous networks II. Erice Lecture Notes, this volume, Heidelberg.Google Scholar
  2. Borre, K. (1977) Geodetic elasticity theory. Bulletin Geodesique 5J, 63–71.CrossRefGoogle Scholar
  3. Borre, K. (1978) Error propagation in absolute geodetic networks-a continuous approach -. Studia geophysica et geodaetica 22 213–223.CrossRefGoogle Scholar
  4. Borre, K. (1979 a) Covariance functions for random error propagation in large geodetic networks. Scientific Bulletin of the Stanislaw Staszic University of Mining and Metallurgy, Krakow 55, 23–33.Google Scholar
  5. Borre, K. (1979 b) On discrete networks versus continua. 2. Int. Symp. weitgespannte Flächentragwerke, Berichtsheft 2, p. 79–85, Stuttgart.Google Scholar
  6. Borre, K. (1980) Elasticity and stress-strain relations in geodetic networks, in: Proceedings of the International School of Advanced Geodesy, ed. E. Grafarend and A. Marussi, p. 335–374, Florence.Google Scholar
  7. Borre, K. and Krarup, T. (1974) Foundation of a theory of elasticity for geodetic networks. Proceedings, 7th Nordiske Geodaet- mode, Copenhagen.Google Scholar
  8. Borre, K. and Meissl, P. (1974) Strength analysis of leveling- type networks, an application of random walk theory, Geodaetisk Institute Meddelelse No. 50, Copenhagen.Google Scholar
  9. Grafarend, E. (1977) Stress-strain relations in geodetic networks, Report 16, Geodetic Institute, University of Uppsala.Google Scholar
  10. Grafarend, E., Heister, H., Keim, R., Kropff, H. Schaffrin, B., (1979) Optimierung geodätischer Meßoperationen, H. Wichmann Verlag, Karlsruhe.Google Scholar
  11. Jordan, W., Eggert, O. and Kneissl, M. (1956) Handbuch der Vermessungskunde, Vol. III, Höhenmessung, Metzlersche Verlagsbuchhandlung, 101h edition, Stuttgart.Google Scholar
  12. Kanwal, R.P. (1971) Linear integral equations. Academic Press, New York.Google Scholar
  13. Klingbeil, E. (1977) Variationsrechnung. Bibliographisches Institut, B.I. Wissenschaftsverlag, Mannheim.Google Scholar
  14. Meissl, P. (1970) über die Fehl erfortpf1anzung in gewissen regelmäßigen flächig ausgebreiteten Niveilementnetzen. Zeitschrift für Vermessungswesen 9, 103–109.Google Scholar
  15. Prenter, P.M. (1975) Splines and Variational Methods. John Wiley & Sons, New York.Google Scholar
  16. Roach, G.F. (1982) Green’s Functions. Cambridge University Press, Cambridge.Google Scholar
  17. Sünkel, H. (1984) Fourier analysis of geodetic networks. Erice Lecture Notes, this volume, Heidelberg.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • E. W. Grafarend
  • F. W. Krumm

There are no affiliations available

Personalised recommendations