Skip to main content

Estimability Analyses of the Free Networks of Differential Range Observations to GPS Satellites

  • Conference paper
Optimization and Design of Geodetic Networks

Abstract

Historically in geodesy, the conventional analysis of satellite networks has been carried out in three distinct steps. First, satellite orbits are computed from observations at some ground tracking stations whose coordinates are precisely known. Second, these computed orbits are taken for granted or slightly relaxed and used for the computation of the coordinates of other ground stations which have carried out additional observations to the same satellites. Third, this process is repeated as more observations become available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aardoom, L. (1970) Geometry from Simultaneous Satellite Ranging, Tellus, Vol. XXII, No. 5, 572–580.

    Google Scholar 

  • Aardoom, L. (1971) Geometric Accuracy Obtainable from Simultaneous Range Measurements to Satellites, in The Use of Artificial Satellites for Geodesy, S.W. Henriksen, A. Mancini and B.H. Chovitz (Editors), Geophysical Monograph Series, Vol. 15, American Geophysical Union, Washington, D.C., 9–18.

    Google Scholar 

  • Arur, M.G. (1977) Experiments for Improved Positioning by Means of Integrated Doppler Satellite Observations and the NNSS Broadcast Ephemerides, Report No. 258, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Bjerhammar, A. (1973) Theory of Errors and Generalized Matrix inverses. Eisevier Scientific Publishing Company, Amsterdam, Netherlands.

    Google Scholar 

  • Blaha, G. (1971a) Inner Adjustment Constraints with Emphasis on Range Observations, Report No. 148, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Blaha, G. (1971b) Investigations of Critical Configurations for Fundamental Range Networks, Report No. 150, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Bossler, J.D., C.C. Goad and P.L. Bender (1980) - Using the Global Positioning System for geodetic positioning, Bull. Geod 54, pp. 553–563.

    Article  Google Scholar 

  • Brown, D.C. and J.E. Trotter (1969). SAGA, A Computer Program for Short Arc Geodetic Adjustment of Satellite Observations, AFCRL-69–0080, Air Force Cambridge Research Laboratories, Bedford, Massachussetts.

    Google Scholar 

  • Councelman, C.C., R.J. Cappallo, S.A. Gourevitch, R.L. Greenspan, T.A. Herring, R.W. King, A.E.E. Rogers, I.I. Shapiro, R.E. Snyder, D.H. Steinbrecker, and A.R. Whitney (1982) Accuracy of relative positioning by interferometry with GPS: double-blind test results, Proc. of the 3rd Inter. Geod. Symp. on Satellite Doppler Positioning, Las Cruces, N.M., pp. 1173–1176.

    Google Scholar 

  • Davidsonf D., D. Delikaraoglou, R. Langley, B. Nickerson, P. Vanicek and D.E. Wells, (1983). Global Positioning System Differential Positioning Simulations. Dept. of Surveying Engineering Technical Report 90, University of New Brunswick, Fredericton.

    Google Scholar 

  • Goad, G. and B.W. Ramondi (1983). Initial relative positioning results using Global Positioning System, paper presented at the IUGG XVII General Assembly, Hamburg.

    Google Scholar 

  • Grafarend, E. and K. Heinz (1978). Rank Defect Analysis of Satellite Geodetic Networks II, Dynamic Mode, Manuscripta Geodetica.

    Google Scholar 

  • Grafarend, E., A. Kleusberg, H. Kremers, F. Massmann, (1982). The processing of satellite Doppler observations in the free network mode, Allgemeine Vermessungs-Nachrichten (AVN) 89 (1982), pp. 286–296.

    Google Scholar 

  • Grafarend, E., A. Kleusberg and F. Massman, (1983). An improvement of the free satellite Doppler network adjustment, IUGG XVIII General Assembly, Hamburg.

    Google Scholar 

  • Grafarend, E., A. Kleusberg, B. Richter, (1979). Free Doppler network adjustment, Proc. 2nd Intern. Geod. Symp. on Satellite Doppler Positioning, Austin 1979, pp. 1053–1069.

    Google Scholar 

  • Grafarend, E., A. Kleusberg and B. Schaffrin (1980). An introduction to the variance-covariance-component estimation of Helmert type, Z 105, pp. 161–180.

    Google Scholar 

  • Grafarend, E. and E. Livieratos, (1978). Rank Defect Analyses of Satellite Geodetic Networks I, Geometric and Semi-Dynamic Mode, Manuscripta Geodetica.

    Google Scholar 

  • Kaula, W.M (1966). Theory of Satellite Geodesy, Blaisdell Publ. Co., Toronto.

    Google Scholar 

  • Langley, R., G. Beutler, D. Delikaraoglou, B.G. Nickerson, R. Santerre P. Vanicek and D.E. Wells, 1984. Studies in the application of the Global Positioning System to differential positioning, Final Contract Report OSU82–00370 to the Geodetic Survey of Canada, Ottawa.

    Google Scholar 

  • Meissl, P., (1969). Zusammenfassung und Ausbau der inneren Fehiertheorie eines Punkthaufens, in “Beiträge zur Theorie des geodätischen Netze im Raum”, by K. Rinner, K. Killian and P. Meissl, Deutsche Geodätische Kommission, Reihe A, No. 61.

    Google Scholar 

  • Pelzer, H. (1974). Zur Behandlung singulärer Ausgleichungsaufgaben, ZFV. 99, pp. 181–194, 479–488.

    Google Scholar 

  • Rinner, K., (1966). Systematic Investigations of Geodetic Networks in Space, U.S. Army Research and Development Group (Europe).

    Google Scholar 

  • Spilker, J.J. (1978). GPS signal structure and performance characteristics, Navigation, 25, pp. 121–146.

    Google Scholar 

  • Tsimis, E., (1973). Critical configurations for range and range-difference satellite networks, Report 191, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Van Gelder, B.H.W. (1973). Estimability and simple dynamical analyses of range (range-rate and range-difference) observations to artifical satellites, Report 284, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Vanicek, P. and E.J. Krakiwsky, (1982). Geodesy: The Concepts, North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Veis, G., (1960). Geodetic uses of artificial satellites, Smithsonian contributions to Astopgyysis, Vol. 3 (9)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delikaraoglou, D. (1985). Estimability Analyses of the Free Networks of Differential Range Observations to GPS Satellites. In: Grafarend, E.W., Sansò, F. (eds) Optimization and Design of Geodetic Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70659-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70659-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70661-5

  • Online ISBN: 978-3-642-70659-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics