Estimability Analyses of the Free Networks of Differential Range Observations to GPS Satellites

  • D. Delikaraoglou


Historically in geodesy, the conventional analysis of satellite networks has been carried out in three distinct steps. First, satellite orbits are computed from observations at some ground tracking stations whose coordinates are precisely known. Second, these computed orbits are taken for granted or slightly relaxed and used for the computation of the coordinates of other ground stations which have carried out additional observations to the same satellites. Third, this process is repeated as more observations become available.


Satellite Orbit Clock Error Satellite Network Rank Deficiency Satellite Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aardoom, L. (1970) Geometry from Simultaneous Satellite Ranging, Tellus, Vol. XXII, No. 5, 572–580.Google Scholar
  2. Aardoom, L. (1971) Geometric Accuracy Obtainable from Simultaneous Range Measurements to Satellites, in The Use of Artificial Satellites for Geodesy, S.W. Henriksen, A. Mancini and B.H. Chovitz (Editors), Geophysical Monograph Series, Vol. 15, American Geophysical Union, Washington, D.C., 9–18.Google Scholar
  3. Arur, M.G. (1977) Experiments for Improved Positioning by Means of Integrated Doppler Satellite Observations and the NNSS Broadcast Ephemerides, Report No. 258, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  4. Bjerhammar, A. (1973) Theory of Errors and Generalized Matrix inverses. Eisevier Scientific Publishing Company, Amsterdam, Netherlands.Google Scholar
  5. Blaha, G. (1971a) Inner Adjustment Constraints with Emphasis on Range Observations, Report No. 148, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  6. Blaha, G. (1971b) Investigations of Critical Configurations for Fundamental Range Networks, Report No. 150, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  7. Bossler, J.D., C.C. Goad and P.L. Bender (1980) - Using the Global Positioning System for geodetic positioning, Bull. Geod 54, pp. 553–563.CrossRefGoogle Scholar
  8. Brown, D.C. and J.E. Trotter (1969). SAGA, A Computer Program for Short Arc Geodetic Adjustment of Satellite Observations, AFCRL-69–0080, Air Force Cambridge Research Laboratories, Bedford, Massachussetts.Google Scholar
  9. Councelman, C.C., R.J. Cappallo, S.A. Gourevitch, R.L. Greenspan, T.A. Herring, R.W. King, A.E.E. Rogers, I.I. Shapiro, R.E. Snyder, D.H. Steinbrecker, and A.R. Whitney (1982) Accuracy of relative positioning by interferometry with GPS: double-blind test results, Proc. of the 3rd Inter. Geod. Symp. on Satellite Doppler Positioning, Las Cruces, N.M., pp. 1173–1176.Google Scholar
  10. Davidsonf D., D. Delikaraoglou, R. Langley, B. Nickerson, P. Vanicek and D.E. Wells, (1983). Global Positioning System Differential Positioning Simulations. Dept. of Surveying Engineering Technical Report 90, University of New Brunswick, Fredericton.Google Scholar
  11. Goad, G. and B.W. Ramondi (1983). Initial relative positioning results using Global Positioning System, paper presented at the IUGG XVII General Assembly, Hamburg.Google Scholar
  12. Grafarend, E. and K. Heinz (1978). Rank Defect Analysis of Satellite Geodetic Networks II, Dynamic Mode, Manuscripta Geodetica.Google Scholar
  13. Grafarend, E., A. Kleusberg, H. Kremers, F. Massmann, (1982). The processing of satellite Doppler observations in the free network mode, Allgemeine Vermessungs-Nachrichten (AVN) 89 (1982), pp. 286–296.Google Scholar
  14. Grafarend, E., A. Kleusberg and F. Massman, (1983). An improvement of the free satellite Doppler network adjustment, IUGG XVIII General Assembly, Hamburg.Google Scholar
  15. Grafarend, E., A. Kleusberg, B. Richter, (1979). Free Doppler network adjustment, Proc. 2nd Intern. Geod. Symp. on Satellite Doppler Positioning, Austin 1979, pp. 1053–1069.Google Scholar
  16. Grafarend, E., A. Kleusberg and B. Schaffrin (1980). An introduction to the variance-covariance-component estimation of Helmert type, Z 105, pp. 161–180.Google Scholar
  17. Grafarend, E. and E. Livieratos, (1978). Rank Defect Analyses of Satellite Geodetic Networks I, Geometric and Semi-Dynamic Mode, Manuscripta Geodetica.Google Scholar
  18. Kaula, W.M (1966). Theory of Satellite Geodesy, Blaisdell Publ. Co., Toronto.Google Scholar
  19. Langley, R., G. Beutler, D. Delikaraoglou, B.G. Nickerson, R. Santerre P. Vanicek and D.E. Wells, 1984. Studies in the application of the Global Positioning System to differential positioning, Final Contract Report OSU82–00370 to the Geodetic Survey of Canada, Ottawa.Google Scholar
  20. Meissl, P., (1969). Zusammenfassung und Ausbau der inneren Fehiertheorie eines Punkthaufens, in “Beiträge zur Theorie des geodätischen Netze im Raum”, by K. Rinner, K. Killian and P. Meissl, Deutsche Geodätische Kommission, Reihe A, No. 61.Google Scholar
  21. Pelzer, H. (1974). Zur Behandlung singulärer Ausgleichungsaufgaben, ZFV. 99, pp. 181–194, 479–488.Google Scholar
  22. Rinner, K., (1966). Systematic Investigations of Geodetic Networks in Space, U.S. Army Research and Development Group (Europe).Google Scholar
  23. Spilker, J.J. (1978). GPS signal structure and performance characteristics, Navigation, 25, pp. 121–146.Google Scholar
  24. Tsimis, E., (1973). Critical configurations for range and range-difference satellite networks, Report 191, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  25. Van Gelder, B.H.W. (1973). Estimability and simple dynamical analyses of range (range-rate and range-difference) observations to artifical satellites, Report 284, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  26. Vanicek, P. and E.J. Krakiwsky, (1982). Geodesy: The Concepts, North-Holland Publ. Co., Amsterdam.Google Scholar
  27. Veis, G., (1960). Geodetic uses of artificial satellites, Smithsonian contributions to Astopgyysis, Vol. 3 (9)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • D. Delikaraoglou

There are no affiliations available

Personalised recommendations