The Role of Cloudphysics in Atmospheric Multiphase Systems: Ten Basic Statements

  • H. R. Pruppacher
Part of the NATO ASI Series book series (volume 6)

Abstract

The role of cloud physics in atmospheric multiphase systems is summarized below in the form of ten basic statements: 1: In the atmosphere, the phase change of water vapor to water drops is a heterogeneous process involving aerosol particles (AP). 2: The phase change from water vapor to drops involves “preferred” AP of specific characteristics. 3: The water soluble portion of atmospheric aerosol particles, picked up by nucleation or impaction scavenging, goes into solution inside the cloud and rain drops, while the water insoluble portion remains suspended in particulate from inside the drops. 4: Most clouds in the atmosphere evaporate again after they had formed. 5: The phase change in the atmosphere from water vapor to ice crystals is a heterogeneous process involving AP. 6: In the atmosphere, the phase change to ice involves “preferred” AP of specific characteristics. 7: The atmosphere contains aerosol particles of a wide range of sizes and number concentrations which are related to each other in a characteristic manner, analogously for all air masses. 8: Atmospheric clouds and precipitation contain hydrometeors of a wide range of sizes and number concentrations which are related to each other in a manner depending characteristically on: (1) the aerosol of the air mass in which the cloud formed, (2) the dynamics of the cloud, (3) the microphysical processes resulting from interaction between the cloud particles, and (4) on whether the hydrometeors consist of water particles or ice particles. 9: Atmospheric clouds contain hydrometeors of a wide range of shapes. These decisively affect the flow field around them, their fall velocity and their fall mode. 10: The development of precipitation particles is a result of four basic mechanisms: (1) Diffusional growth of ice crystals surrounded by a water saturated atmosphere filled with cloud drops; (2) Stochastic growth of snow crystals colliding with and sticking to other snow crystals to form snow flakes; (3) Semi-continuous growth of snow crystals by collision with supercooled drops to form graupel and hailstones; (4) Stochastic growth of cloud drops colliding and coalescing with other cloud drops to form rain drops.

Keywords

Clay Dust Silicate Manganese Acidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B. J., and Hallet, J. (1976): Supersaturation and time dependence of ice nucleation from vapor on single crystal substrates. J. Atmos. Sei. 33, 822–832.CrossRefGoogle Scholar
  2. Baboolal, L., Pruppacher, H. R., and Topalian, J. (1981): A sensitivity study of a theoretical model of SO2 scavenging by water drops in air. J. Atmos. Sei. 38, 856–870.CrossRefGoogle Scholar
  3. Barrie, L., and Georgii, H. W. (1976): An experimental investigation of the absorption of sulfur dioxide by water drops containing heavy metal ions. Atmos. Environm. 10, 743–749.CrossRefGoogle Scholar
  4. Battan, L. J., and Reitan, C. H. (1957): Artificial Stimulation of Rain, 184, Pergamon Press, New York.Google Scholar
  5. Beard, K. V. (1980): The effects of altitude and electric force on the terminal velocity of hydrometeors. J. Atmos. Sei. 37, 1363–1374.CrossRefGoogle Scholar
  6. Beard, K. V., and Pruppacher, H. R. (1971): A windtunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sei. 28, 1455–1464.CrossRefGoogle Scholar
  7. Beheng, K. D. (1978): Numerical simulation of graupel development. J. Atmos. Sei. 35, 683–689.CrossRefGoogle Scholar
  8. Berry, E. X. (1973): Final Rept. to NSF on grant GH 213350. Desert. Res. Inst. Reno, Nevada.Google Scholar
  9. Borovikov (1963): Cloud Physics, Israel Progr. for Sei. Transl., U.S. Dept. of Commerce, Techn. Series, Washington, D.C.Google Scholar
  10. Brown, R. (1980): A numerical study of radiation fog with an explicit formulation of the microphysics. Quart. J. Roy. Meteor. Soc. 106, 781–802.CrossRefGoogle Scholar
  11. Czerwinski, N., and Pfisterer, W. (1972): Typen von Regentropfenspektren. J. de Rech. Atmos. 6, 89–105.Google Scholar
  12. d’Almeida, G., and Schuetz, L. (1983): Number, Mass and Volume distribution of mineral aerosol and soils in the Sahara. J. of Climate and Appl. Meteor. 22, 233–243.CrossRefGoogle Scholar
  13. Dlugi, R. J., and Jordan, S. (1982): Heterogenous SO2 oxidation. J. Hungarian Meteor. Service 86, 82–88.Google Scholar
  14. Eldrigde, R. G. (1957): Measurements of cloud drop size distributions. J. Meteor. 14, 55–59.CrossRefGoogle Scholar
  15. Federer, B., and Waldvogel, A. (1975): Hail and raindrop size distributions from a Swiss Multicell storm. J. Appl. Meteor. 14, 91–97.CrossRefGoogle Scholar
  16. Fitzgerald, J. W. (1974): Effect of aerosol composition on cloud droplet size distribution: a numerical study. J. Atmos. Sei. 31, 1358–1367.CrossRefGoogle Scholar
  17. Garland, J. A. (1971): Some fog droplet size distributions obtained by an impaction method. Quart. J. R. Met. Soc. 97, 483–494.CrossRefGoogle Scholar
  18. Georgii, H. W., Jost, D., and Fitze, W. (1971): Konzentration und Groessenverteilung des Sulfataerosols in der unteren und mittleren Troposphaere. Ber. Inst. Meteor. Geophys. Nr. 23, Univ. Frankfurt, FRG.Google Scholar
  19. Gori, E. G., and Joss, J. (1980): Shape of raindrop size distributions simultaneously observed at three altitudes. Preprints, Cloud Phys. Conference, Clermont-Ferrand, France, 149–152.Google Scholar
  20. Grosch, M. L. (1978): Reaktionen von SO2 an Aerosolpartikeln unter atmosphaerischen Bedingungen, Ber. Inst. Meteor. Geophys. Nr. 36, Univ. Frankfurt, FRG.Google Scholar
  21. Grover, S. (1980): A numerical investigation of the efficiency with which aerosol particles collide with drops. Ph.D. Thesis, Dept. Atmos. Sci., University of California, Los Angeles, California.Google Scholar
  22. Gunn, R., and Marshall, J. S. (1958): The distribution with size of aggregate snowflakes. J. Meteor. 15, 452–461.CrossRefGoogle Scholar
  23. Hegg, D. A., and Hobbs, P. V. (1982): Cloud water chemistry and the production of sulfate in clouds. Atmos. Environ. 15, 1597–1604.Google Scholar
  24. Hegg, D. A., and Hobbs, P. V. (1983): Precipitation Scavenging, Dry Deposition and Resuspension, Vol. I, 79–89. Elsevier Publ. Co., New York.Google Scholar
  25. Hegg, D. A., Hobbs, P. V., and Radke, L. F. (1980): A preliminary study of cloud chemistry. Preprints, Cloud Phys. Conference at Clermont-Ferrand, France, 7–10.Google Scholar
  26. Herzegh, P. H., and Hobbs, P. V. (1980): Observations of snow size spectra in frontal clouds, Preprint, Cloud Phys. Conference, Clermont-Ferrand, France, 201–204.Google Scholar
  27. Hindman, E. E., Hobbs, P. V., and Radke, L. F. (1977): Cloud condensation nucleus size distributions and their effects on cloud droplet distributions. J. Atmos. Sci. 34, 951–956.CrossRefGoogle Scholar
  28. Hobbs, P. V. (1978): Res. Rept. XIII, Univ. of Washington, Dept. Atmospheric Sciences, Cloud Physics Group.Google Scholar
  29. Hobbs, P. V. (1978): Res. Rept. VI, Cloud Phys. Group, Dept. Atmos. Sci., University of Washington, Wash.Google Scholar
  30. Hobbs, P. V., and Atkinson, D. G. (1976): The concentration of ice particles in orographic clouds and cyclonic storms over the Cascade Mountains. J. Atmos. Sci. 33, 1362–1374.CrossRefGoogle Scholar
  31. Hobbs, P. V., Politovich, M. K., and Radke, L. F. (1980); The structure of summer convective clouds in Eastern Montana. I. J. App. Meteor. 19, 645–663.CrossRefGoogle Scholar
  32. Hoffer, T. E. (1960): A laboratory investigation of droplet freezing. Techn. Note Nr. 22, Univ. of Chicago, Chicago, I11.Google Scholar
  33. Houze, R. H., Hobbs, P. V., Herzegh, P. H., and Parsons, D. B. (1979): Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci. 36, 156–162.CrossRefGoogle Scholar
  34. Hudson, J. G. (1980): Microphysics of coastal fog and stratus. Preprints, Cloud Phys. Conf., Clermont-Ferrand, France, 205–208.Google Scholar
  35. Jaenicke, R. (1978): Ueber die Dynamik atmosphaerischer Aitkenteilchen. Ber. Bunsen- gesellschaft, Ser. Phys. Chem. 82, 1198–1202.Google Scholar
  36. Jaenicke, R. (1982): Chemistry of the unpolluted and polluted Troposphere, 341–373, D. Reidel Publ. Co., Dordrecht, HollandGoogle Scholar
  37. Jiusto., J. E., and Lala, G. G. (1981): CCN-Supersaturation Spectra Slopes. J. de Rech. Atmos. 15, 303–311.Google Scholar
  38. Joss, J., Thams, J. C., and Waldvogel, A. (1968): The variations of rain drop size distributions at Locarno. Preprint, Cloud Phys. Conference, Toronto, 369–373.Google Scholar
  39. Knight, N. (1981): The climatology of hailstone embryos. J. Appl. Meteor. 20, 750–755.CrossRefGoogle Scholar
  40. Leaitch, W. R. (1983): Precipitation Scavenging, Dry Deposition and Resuspension, Vol. 1. 53–69, Elsevier Publ. Co., New York.Google Scholar
  41. Leary, C. A., and Houze, R. A. (1979): Melting and evaporation of hydrometeors in precipitation from anvil clouds. J. Atmos. Sci. 35, 669–679.CrossRefGoogle Scholar
  42. LeClair, B. P., Hamielec, A. E., Pruppacher, H. P., and Hall, W. D. (1972): A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity. J. Atmos. Sci. 29, 728–740.CrossRefGoogle Scholar
  43. Lee, I. Y., Haenel, G., and Pruppacher, H. R. (1980): A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles. J. Atmos. Sci. 37, 1839–1853.CrossRefGoogle Scholar
  44. Lew, J., and Pruppacher, H. R. (1983): A theoretical determination of the capture efficiency of small columnar ice crystals by large cloud drops. J. Atmos. Sci. 40, 139–145.CrossRefGoogle Scholar
  45. Martin, J., Wang, P. K., and Pruppacher, H. R. (1980): A theoretical determination of the efficiency with which aerosol particles are collected by simple ice crystal plates. J. Atmos. Sci. 37, 1628–1638.CrossRefGoogle Scholar
  46. Mei-Yuan, H. (1963): Microstructure of cumulus clouds. Izv. Akad. Nauk. SSSR, Ser. Geofiz. No. 2, 362–376.Google Scholar
  47. Murakani, H., Hiramatsu, C., and Magono, C. (1981): Observations of aerosol scavenging by falling snow crystals at two sites of different heights. J. Meteor. Soc. Japan, 59, 763–771.Google Scholar
  48. Parungo, P., Ackermann, E., and Proulx, H. (1976): Natural ice nuclei. J. Rech. Atmos. 10, 45–60.Google Scholar
  49. Passarelli, R. E. (1978): Techn. Note, Nr. 52, Dept. of Geophys. Sci., Univ. of Chicago, Chicago.Google Scholar
  50. Passarelli, R. E., and Srivastava, R. C. (1979): A new aspect of snow flake aggregation theory. J. Atmos. Sci. 36, 484–493.CrossRefGoogle Scholar
  51. Pitter, R. L. (1977): A re-examination of riming on thin ice plates. J. Atmos. Sci. 34, 684–685.CrossRefGoogle Scholar
  52. Pitter, R. L., and Pruppacher, H. R. (1974): A numerical investigation of collision efficiencies of simple ice plates colliding with supercooled drops. J. Atmos. Sci. 31, 551–559.CrossRefGoogle Scholar
  53. Pitter, R. L., Pruppacher, H. R., and Hamielec, H. E. (1973): A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers. J. Atmos. Sci. 30, 125–134.CrossRefGoogle Scholar
  54. Prodi, F. (1976): Scavenging of aerosol particles by growing ice crystals. Preprints, Cloud Phys. Conference, Boulder, Colorado, 70–75.Google Scholar
  55. Pruppacher, H. R., and Klett, J. D. (1978): Microphysics of Clouds. D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  56. Pruppacher, H. R., and Lew. J. (1983): private communication.Google Scholar
  57. Pruppacher, H. R., and Rasmussen, R. (1979): A windtunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmos. Sci. 36, 1255–1260.CrossRefGoogle Scholar
  58. Radke, L. (1983): Precipitation Scavenging, Dry Deposition and Pesuspension, Vol. I, 71–78. Elsevier Publ. Co., New York.Google Scholar
  59. Radke, L. F., Hobbs, P. V., and Eltgroth, M. W. (1980): Scavenging of aerosol particles by precipitation. J. Appl. Meteor. 19, 715–722.CrossRefGoogle Scholar
  60. Radke, L. F., Hobbs, P. V., and Pinnons, J. E. (1976): Observations of cloud condensation nuclei, sodium containing particles, ice nuclei, and the light scattering coefficient near Barrow, Alaska. J. Atmos. Sci. 15, 982–995.Google Scholar
  61. Roach, W. T. (1976): On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Quart. J. Roy. Meteor. Soc. 102, 361–372.CrossRefGoogle Scholar
  62. Roberts, P., and Hallett, J. (1968): A laboratory study of ice nucleating properties of some mineral particles. Quart. J. Roy. Meteor. Soc. 94, 25–34.CrossRefGoogle Scholar
  63. Rosinski, J., Yamate, G., and Parungo, F. (1980): Size distribution of inorganic and organic ice-forming nuclei present in downdrafts of convective storms. Meteor. Rundschau 33, 97–106.Google Scholar
  64. Rucklidge, J. -(1965): The examination by electron microscope of ice crystal nuclei from cloud chamber experiments. J. Atmos. Sci. 22, 301–308.CrossRefGoogle Scholar
  65. Runca-Koeberich, D. R. (1979): Ein Beitrag zur Konstitution atmosphaerischer eisbildender Kerne. Ber. Inst. Meteor. Geophys. Nr. 37, Univ. Frankfurt, FRG.Google Scholar
  66. Schaller, R. C., and Fukuta, N. (1979): On the hydrodynamic behavior of supercooled water drops interacting with columnar ice crystals. J. Atmos. Sci. 36, 1788–1802.CrossRefGoogle Scholar
  67. Schlamp, R. J., and Pruppacher, H. R. (1977): Pure and Appl. Geophys. 115, 805–843.CrossRefGoogle Scholar
  68. Schlamp, R. J., Pruppacher, H. R., and Hamielec, A. E. (1975): A numerical investigation of the efficiency with which simple columnar ice crystals collide with supercooled water drops. J. Atmos. Sci. 32, 2330–2337.CrossRefGoogle Scholar
  69. Soulange, R. G., Andraud, G., and Isaka, A. (1980): Etude d’un cas de zone d1 accumulation d’eau dans un cumulonimbus tropical. J. de Rech. Atmos. 14, 477–486.Google Scholar
  70. Stein, D., and Georgii, H. W. (1983): Messung der Groessenverteilung atmosphaerischer Gefrierkerne unter Beruecksichtigung der Feuchte. Meteor. Rundschau 36, 127–132.Google Scholar
  71. Twomey, S., and Wojciechowski, T. A. (1969): Observation of the geographical variation of cloud nuclei. J. Atmos. Sci. 26, 684–688.Google Scholar
  72. Twomey, S., and Warner, K. (1967): Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci. 24, 702–793.CrossRefGoogle Scholar
  73. Walceck, C., and Pruppacher, H. R. (1984): On the scavenging of SO2 by cloud and rain drops. III. J. Atmos. Chem. in press.Google Scholar
  74. Waldman, J. M., Munger, J.W., Jacob, D. J., Flagan, R. C., Morgan, J.J., and Hoffmann, M. R. (1982): Chemical composition of acid fog. Science 218, 677–679.CrossRefGoogle Scholar
  75. Waldvogel, A. (1974): The No-jump of raindrop spectra. J. Atmos. Sci. 31, 1067–1078.CrossRefGoogle Scholar
  76. Wang, P. K., Grover, S. N., and Pruppacher, H. R. (1978): On the effect of electric charges on the scavenging of aerosol particles by cloud and small rain drops. J. Atmos. Sci. 35, 1735–1743.CrossRefGoogle Scholar
  77. Warner, J. (1968): The supersaturation in natural clouds. J. de Rech. Atmos. 3, 233–237.Google Scholar
  78. Warner, J. (1969): The microstructure of cumulus clouds, I. J. Atmos. Sci. 26, 1049–1059.CrossRefGoogle Scholar
  79. Warner, J. (1970): On steady-state one dimensional models of cumulus convection. J. Atmos. Sci. 27, 1035–1040.CrossRefGoogle Scholar
  80. Whitby K. T. (1978): The physical characteristics of sulfur aerosols. Atmos. Environ. 12, 135–159.CrossRefGoogle Scholar
  81. Winkler, P. (1967): Wachstum natuerlicher Aerosolteilchenproben. Diploma Thesis. Meteor. Inst., University of Mainz, FRG.Google Scholar
  82. Yagi, T., and Uyeda, H. (1980): Different size distributions of snow based on meteorological situations. Preprints, Cloud Physics Conference, Clermont-Ferrand, France, 231–234.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H. R. Pruppacher
    • 1
  1. 1.Meteorologisches InstitutJohannes Gutenberg UniversitaetMainzGermany

Personalised recommendations