Modes of Interaction of Air Pollutants with Spruce-Fir Forests: Summary and New Mechanisms

  • G. H. Kohlmaier
  • E. O. Siré
  • U. Fischbach
  • H. Broehl
  • M. Ploechl
Conference paper
Part of the NATO ASI Series book series (volume 6)


The longest standing hypothesis of interaction of acid precipitation (rain, snow, fog, particulate or gaseous compounds) with the vegetation is to be understood in a literal sense: deposition or interception of protons by the aboveground vegetation and soil leads to a negative stress for the plant metabolism. Both the leaves (needles) of the tree canopy as well as the soil-root system may be affected adversely by the excess acid.

Ulrich (Goettingen) has emphasized that a chronic intoxication of the soil may occur when more and more of the monovalent and bivalent nutrient cations (K+, Ca++, Mg++) are replaced by protons on the cation exchange sites while at the same time Al+++ ions are liberated when the breakdown of the clay materials occurs.

On the other hand a drastically lowered Mg++ and Ca++ concentration of the spruce and fir needles has been observed which may be a consequence of the soil impoverishment but also an effect of direct acid leaching on the needles. Ozone and other photooxidants like PAN may support the latter effect in as much as the cuticula (wax) layer of the needle is destroyed and the cell membranes are made more permeable to ion exchange.

As a new mechanism it is suggested that the proton gradient across the thylacoid membrane of the chloroplast, responsible for the ATP production in the light reaction of photosynthesis, is reduced by acid infiltration or changed membrane permeability. Thus other parts of metabolism may be activated, since the ratio of ATP to NADPH/H+ is changed.

It will be also discussed whether the primary and secondary products of anthropogenic emissions are interacting directly with the leaves, roots and soil of the system, or whether there may be a local chemical or photochemical interaction with some of the metabolic products of the coniferous trees, like terpenes, isoprene and ethylene, leading together with NOX to the more toxic higher homologues of PAN as well as ozone.


Grassland Ecosystem Buffer Region Temperate Forest Ecosystem Cation Exchange Site Terpene Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schroeder, J.V., and C. Reuss, 1883. Die Beschaedigung der Vegetation durch Rauch und die Oberharzer Huettenrauchschaeden. Verlag v. Paul Parey, Berlin.Google Scholar
  2. 2.
    Wright, R.F., and Gjessing, E.T., 1976: Acid Precipitation: Changes in the Chemical Composition of Lakes. Airibio 5, No. 5–6, p. 219–223.Google Scholar
  3. 3.
    Schofield, C.F., 1976. Acid Precipitation: Effects on Fish. Ambio 5, No. 5–6, p. 228–230.Google Scholar
  4. 4.
    Hendrey, G.R., K. Baalsrud, T.S. Trauen, M. Laake and G. Racklum, 1976. Acid Precipitation: Some Hydrobiological Changes. Ambio 5, No. 5–6, p. 224–227.Google Scholar
  5. 5.
    Der Bundesminister fuer Erna ehr ung, Landwirtschaft und Forsten, 1983. Neuartige Wald-schaeden in der Bundesrepublik. Report of the Federal Ministry of Food, Agriculture and Forests on the occasion of the forest damage inventory 1983. Bonn, FRG.Google Scholar
  6. 6.
    P. Schuett, 1982. Das Krankheitsbild - verschiedene Baumarten, gleiche Symptome. Bild der Wissenschaft 12–82, p. 86–101.Google Scholar
  7. 7.
    Athari, S., and H. Kenneweg, 1983. Zur Problematik des “Waldsterbens aus der Sicht der Waldwachstumsforschung und der Waldinventur.” Allg. Forst- und Jagd-Zeitung, 154. Jg., 6 /7, p. 114–121.Google Scholar
  8. 8.
    Zoettle, H.W., and Mies, E., 1983. Die Fichtenerkrankung in Hochlagen des Suedschwarzwaldes. Allg. Forst- und Jagd-Zeitung, 154. Jg., 6 /7, p. 110–114.Google Scholar
  9. 9.
    Der Bundesminister fuer Ernaehrung, Landwirtschaft und Forsten 1982. Waldschaeden durch Luftverunreinigungen. Publications of the Ministry of Food, Agriculture and Forests, Series A: Applied Sciences, Vol. 273.1Google Scholar
  10. 10.
    H. Schroeter, 1983. Entwicklung des Gesundheitszustandes von Tannen und Fichten auf Beobachtungsflaechen der FVA in Baden-Wuerttemberg. Allg. Forst- u. Jagd-Zeitung, 154. Jg., 6 /7. p. 132–131.Google Scholar
  11. 11.
    Binns, W.O., and D.B. Redfern, 1983. Acid Rain and Forest Decline in W.Germany. Forest Commission Research and Development Paper 131, Forestry Research Station, Alice Holt Lodge, Wrecclesham, Farnham, Surrey GU104LH.Google Scholar
  12. 12.
    Ulrich, B., and J. Pankrath, 1983. Effects of Accumulation of Air Pollutants in Forest Ecosystems, D. Reidel Publishing Company, Dordrecht, London.CrossRefGoogle Scholar
  13. 13.
    Highton, N.H., and M.J. Chadwick, 1982. The Effects on Changing Patterns of Energy Use on Sulfur Emission and Deposition in Europe. Ambio Vol. 11, No. 6, p. 324–329.Google Scholar
  14. 14.
    Umweltbundesamt, 1982. Monthly reports from the Monitoring Network of the Federal Environmental Agency, W.-Berlin.Google Scholar
  15. 15.
    Whelpdale, D. M., 1982. Wet and Dry Deposition. In: H.W. Georgii and W. Jaeschke (eds): Chemistry of the Unpolluted and Polluted Troposphere. D. Reidel Publ. Comp., Dordrecht: Holland.Google Scholar
  16. 16.
    Prinz, B., G.H.M. Krause, and H. Stratmann, 1982. Vorlaeufiger Bericht der Landesanstalt fuer Immissionsschutz ueber Untersuchungen zur Aufklaerung der Waldschaeden in der Bundesrepublik Deutschland.Google Scholar
  17. 17.
    Holdren, M.W., H.H. Westberg, and P.R. Zimmerman, 1979. Analysis of Monoterpene Hydrocarbons in Rural Atmospheres. J. Geophys. Res. 84, No. 68, p. 5083–5088.CrossRefGoogle Scholar
  18. 18.
    Whitby, R.A., and P.E. Coffey, 1977. Measurements of Terpenes and Other Organics in an Adirondack Mountain Pine Forest. J. Geophys. Res. 82, No. 37, p. 5928–5934.CrossRefGoogle Scholar
  19. 19.
    Pinker, R.T., and A. Delman, 1983. On the precipitation - vegetation - ozone connection in the Washington, D.C. area. Atmos. Environ. 17, 2, p. 221–226.CrossRefGoogle Scholar
  20. 20.
    Yokouchi, Y., M. Okaniwa, Y. Ambe and K. Fuwa, 1983. Seasonal variation of Monoterpenes in the atmosphere of a Pine forest. Atmos. Environ. 17, 4,, p. 743–750.CrossRefGoogle Scholar
  21. 21.
    Guderian, R., and R. Rabe, 1981. Effects of photochemical oxidants on plants. Final report of the European Communities, Directorate General for Environment, Consumer Protection and Nuclear Safety.Google Scholar
  22. 22.
    Graedel, T.E., 1979. Terpenoids in the Atmosphere. Rev. Geophys. Space, Phys. 17, 5, p. 937–947.CrossRefGoogle Scholar
  23. 23.
    Heicklen, J ., 1976. Atmospheric Chemistry. Academic Press.Google Scholar
  24. 24.
    Larcher, W., 1980. Physologica_ Plant Ecological. Springer-Verlag, Berlin, Heidelberg, New York, 2nd ed.Google Scholar
  25. 25.
    Malhotra, S.S., and D. Hocking, 1976. Biochemical and Cytological Effects of Sulphur Dioxide on Plant Metabolism. New Phytol. 76, p. 227–237.CrossRefGoogle Scholar
  26. 26.
    Ziegler, I ., 1973. The effect of air polluting gases on plant metabolism. In: Environmental Quality and Safety (Coulston F. and Korte F. (eds).).Google Scholar
  27. 27.
    Knabe, W., 1976. Effects of Sulfur Dioxide on Terrestrial Vegetation, Ambio 5 (5–6), p.p. 213–218.Google Scholar
  28. 28.
    Guderian, R., 1970a. Untersuchungen ueber quantitative Beziehungen zwischen dem Schwefelgehalt von Pflanzen und dem Schwefeldioxidgehalt der Luft. Z. Pflanzen - krankh. 77, 387.Google Scholar
  29. 29.
    Schaub, H ., 1983. Private Communication.Google Scholar
  30. 30.
    Unsworth, M.H., 1981. Air pollution and plant productivity. In: Physiological Processes limiting Plant Productivity. ( Johnson C.B. ed.), Butterworths, London, pp. 293–306.Google Scholar
  31. 31.
    Mitchell, P., 1966. Bot. Rev. 41, 445–502.Google Scholar
  32. 32.
    Ulrich, B., 1983. Gefahren fuer das Waldoekosystem durch Saure Niederschlaege, Sonderheft der Mitteilungen 1982 - Erweiterte Neuauflage 1983 der Landesanstalt fuer Oekologie Landwirtschaftsentwicklung und Forstplanung Nordrhein-Westfalen.Google Scholar
  33. 33.
    Huettermann, A ., 1983. Immissionsschaeden im Bereich der Wurzeln von Waldbaeumen. LOELF. 1983, pp. 10a–14a.Google Scholar
  34. 34.
    Ulrich, B., 1983. Soil acidity and its relations to acid deposition. In: Effects of Accumulation of Air Pollutants in Forest Ecosystems ( Ulrich, B., Pankrath, J. eds), D. Reidel Publishing Company, Dordrecht, London.CrossRefGoogle Scholar
  35. 35.
    Lange, 1983 in: Hearing of the Hessian Parliament, 22.4.1983, UWA/10/5. LFA/10/4, WTA/10/3, Stenographic Report.Google Scholar
  36. 36.
    Smith, W.H., 1981. Air pollution and forests. Springer Verlag New York, Berlin, Heidelberg.Google Scholar
  37. 37.
    Rasmussen, R.A., 1972. What do the hydrocarbons from trees contribute to air pollution? J. Air Poll. Control Assoc., 22 (7), 537–543.Google Scholar
  38. 38.
    Zimmerman, P.R., R.B. Chatfield, J. Fishmann, P.J. Crutzen and P.L. Hanst, 1978. Estimates of the production of CO and H2 from the Oxidation of hydrocarbon emission from vegetation. Geophys. Res. Lett., 6, 679–682.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • G. H. Kohlmaier
    • 1
  • E. O. Siré
    • 1
  • U. Fischbach
    • 1
  • H. Broehl
    • 1
  • M. Ploechl
    • 1
  1. 1.Institute for Physical and Theoretical ChemistryJohann Wolfgang Goethe-UniversityFrankfurt am MainGermany

Personalised recommendations