Advertisement

Transition Metals as Potential Catalysts in Atmospheric Oxidation Processes

  • Rudi van Eldik
Part of the NATO ASI Series book series (volume 6)

Abstract

In addition to the photochemical free radical pathways involving O3, OH, H2O2, HO2, RO2 and O(3P) as oxidizing agents for atmospheric oxidation processes, substantial evidence for transition metal catalyzed pathways has been reported. In these homogeneous aqueous-phase oxidation processes the initial step usually involves the formation of a metal complex with the species to be oxidized, which is the basis for the catalytic activity.

In this contribution the general behaviour of transition metal ions in aqueous solution is discussed with emphasis on: chemical forms, equilibria, solubility and stability of different oxidation states, complex formation ability, reaction modes and associated mechanisms, redox properties. The interaction of transition metal ions with dissolved gases such as CO2, SO2 and their conjugated bases, and the reactivity of the produced complexes including elimination, aquation, redox and photochemical reactions is treated in detail. The relevance of the described processes in atmospheric oxidation reactions is stressed.

Keywords

Metal Center Carbon Dioxide Uptake Linkage Isomerization Complex Formation Ability Aquo Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.R. Ember, Acid pollutants: hitchhikers to ride the wind, Chem. Eng. News, Sept. 14, 20 (1981).Google Scholar
  2. 2.
    T.E. Graedel and C.J. Weschler, Chemistry with aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space Phys. 19, 505 (1981).CrossRefGoogle Scholar
  3. 3.
    G. Gravenhorst, S. Beilke, M. Betz and H.-W. Georgii, Sulfur dioxide absorbed in rain water, in “Effects of acid precipitation of terrestrial ecosystems”, T.C. Hutchinson and M. Havas (Eds.), Plenum Publishing Co., 41 (1980).Google Scholar
  4. 4.
    J.J. Morgan, Factors governing the pH, availability of H+, and oxidation capacity of rain, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 17 (1982).Google Scholar
  5. 5.
    W.L. Chameides and D.D. Davis, Chemistry in the troposphere, Chem. Eng. News, Oct. 4, 39 (1982).Google Scholar
  6. 6.
    H. Niki, Homogeneous gas phase oxidation processes in the troposphere, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 301 (1982.)Google Scholar
  7. 7.
    R.J. Cicerone, Tropospheric gases, aerosols and photochemical reactions group report, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 357 (1982).Google Scholar
  8. 8.
    T.E. Graedel, Aqueous chemistry in the atmosphere group report, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 93 (1982).Google Scholar
  9. 9.
    A. Huss, P.K. Lim and C.A. Eckert, On the uncatalyzed oxidation of sulfur(IV) in aqueous solutions, J. Am. Chem. Soc. 100, 6252 (1978).CrossRefGoogle Scholar
  10. 10.
    P.K. Lim, A. Huss and C.A. Eckert, Oxidation of aqueous sulfur dioxide. 3. The effects of chelating agents and phenolic antioxidants, J. Phys. Chem. 86, 4233 (1982).CrossRefGoogle Scholar
  11. 11.
    S.A. Penkett, Laboratory studies of S(IV) to S(VI), this volume.Google Scholar
  12. 12.
    J.H. Overton, V.P. Aneja and J.L. Durham, Production of sulfate in rain and raindrops in polluted atmospheres, Atmos. Environ. 13, 355 (1979).CrossRefGoogle Scholar
  13. 13.
    Research priorities and criteria to establish factors which govern precipitation chemistry - Workshop report, p 3–10, 1982 (in press).Google Scholar
  14. 14.
    F.E. Brinckman, G.J. Olson and W.P. Iverson, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 231 (1982).Google Scholar
  15. 15.
    R. van Eldik and G.M. Harris, Kinetics and mechanism of the formation, acid- catalyzed decomposition and intramolecular redox reaction of oxygen-bonded sulfitopentaamminecobalt(III) ions in aqueous solution, Inorg. Chem. 19, 880 (1980).CrossRefGoogle Scholar
  16. 16.
    E. Chaffee, T.P. Dasgupta and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 5. Carbon dioxide uptake by hydroxo- pentaamminecobalt(III)ion to form carbonatopentaamminecobalt(III) ion, J. Am. Chem. Soc. 95, 4169 (1973).CrossRefGoogle Scholar
  17. 17.
    D.A. Palmer, R. van Eldik, H. Kelm and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 17. Carbon dioxide uptake by and decarboxylation of the cis-bis(ethylenediamine)rhodium(III) system in aqueous solution, Inorg. Chem. 19, 1009 (1980).CrossRefGoogle Scholar
  18. 18.
    R. van Eldik, D.A. Palmer and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 18. Carbon dioxide uptake by and decarboxylation of the trains -bis (e thy lenedi amine) rhodium (III) system in aqueous solution, Inorg. Chem. 19, 3673 (1980).CrossRefGoogle Scholar
  19. 19.
    R. van Eldik, D.A. Palmer, H. Kelm and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 20. Carbon dioxide uptake by and decarboxylation of trans-halogenobis(ethylenediamine)rhodium(III) complexes in aqueous solution, Inorg. Chem. 19, 3679 (1980).CrossRefGoogle Scholar
  20. 20.
    A. Jost, Fast reactions in solutions at high pressures. 3. The effect of pressure on the reactions of Fe(III) ions with thiocyanate in water up to 2 kbar at 25°C, Ber. Bunsenges. Phys. Chem. 80, 316 (1976).Google Scholar
  21. 21.
    T.W. Swaddle and A.E. Merbach, High-pressure oxygen-17 fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution, Inorg. Chem. 20, 4212 (1981).CrossRefGoogle Scholar
  22. 22.
    R. Doss, R. van Eldik and H. Kelm, A reinvestigation of the effect of pressure on the reaction of Fe(III) with thiocyanate ions in aqueous solution, Ber. Bunsenges. Phys. Chem. 86, 925 (1982).Google Scholar
  23. 23.
    C.J. Hipp and D.H. Busch, Ligand reactions - the effect of metal complexes on chemical processes, in “Coordination Chemistry Vol. 2”, A.E. Martell (Ed.), ACS Monograph 174, 221 (1978).Google Scholar
  24. 24.
    D.A. Palmer and R. van Eldik, The Chemistry of metal carbonato and carbon dioxide complexes, Chem. Rev. 83, 651 (1983).CrossRefGoogle Scholar
  25. 25.
    R. van Eldik, Reactions involving coordinated ligands, in “Adv. in inorganic and bioinorganic mechanisms” Vol. 3, A.G. Sykes (Ed.), Academic Press.Google Scholar
  26. 26.
    M.L. Tobe, “Mechanisms of inorganic reactions”, Nelson, 51 (1972).Google Scholar
  27. 27.
    D.W. Margerum, G.R. Cayley, D.C. Weatherburn and G.K. Pagenkopf, Kinetics and mechanisms of complex formation and ligand exchange, in “Coordination Chemistry Vol. 2”, A.E. Martell (Ed.), ACS Monograph 174, 1 (1978).Google Scholar
  28. 28.
    H. Kruger, Techniques for the kinetic study of fast reactions in solution, Chem. Soc. Rev. 11, 227 (1982).CrossRefGoogle Scholar
  29. 29.
    A.E. Merbach, The elucidation of solvent exchange mechanisms by high-pressure NMR studies, Pure Appl. Chem. 54, 1479 (1982).CrossRefGoogle Scholar
  30. 30.
    R. van Eldik and H. Kelm, Interpretation of the volume of activation of inorganic reactions in solution, Rev. Phys. Chem. Jpn. 50, 185 (1980).Google Scholar
  31. 31.
    D.E. Pennington, Oxidation-reduction reactions of coordination complexes, in “Coordination Chemistry Vol. 2”, A.E. Martell (Ed.), ACS Monograph 174, 476 (1978).Google Scholar
  32. 32.
    K.S. Johnson, Carbon dioxide hydration and dehydration kinetics in seawater, Limnol. Oceanogr. 27, 849 (1982).CrossRefGoogle Scholar
  33. 33.
    R. van Eldik and D.A. Palmer, Effect of pressure on the kinetics of the dehydration of cabonic acid and the hydrolysis of CO2 in aqueous solution, J. Sol. Chem. 11, 339 (1982).Google Scholar
  34. 34.
    K.F. Wissbrun, D.M. French and A. Patterson, The true ionization constant of carbonic acid in aqueous solution from 5 to 45°C, J. Phys. Chem. 58, 693 (1954).CrossRefGoogle Scholar
  35. 35.
    M. Paabo and R.G. Bates, Dissociation of deuteriocarbonate ion in deuterium oxide from 5 to 50°C, J. Phys. Chem. 73, 3014 (1969).CrossRefGoogle Scholar
  36. 36.
    J.P. Hunt, A.C. Rutenberg and H. Taube, Mechanism of aquation of carbonatopenta- amminecobaltic ion in acid solution, J. Am. Chem. Soc. 74, 268 (1952).CrossRefGoogle Scholar
  37. 37.
    C.A. Bun ton and D.R. Llewellyn, Tracer studies in the aquation and hydrolysis of cobalt complexes, J. Chem. Soc. 1692 (1953).Google Scholar
  38. 38.
    U. Spitzer, R. van Eldik and H. Kelm, Mechanistic information from the effect of pressure on the formation and acid-catalyzed aquation reactions of carbonatopenta- amminecobalt(III), -rhodium(III) and -iridium(III) ions in aqueous solution, Inorg. Chem., 21, 2821 (1982).CrossRefGoogle Scholar
  39. 39.
    F.A. Cotton and G. Wilkinson, “Inorganic Chemistry”, 4th Ed., John Wiley, 540 (1980).Google Scholar
  40. 40.
    M. Schmidt in “Sulfur in organic and inorganic chemistry Vol. 2”, A. Senning (Ed.), Marcel Dekker, 84 (1972).Google Scholar
  41. 41.
    R.H. Betts and R.H. Voss, The kinetics of oxygen exchange between the sulfite ion and water, Can. J. Chem. 48, 2035 (1970).CrossRefGoogle Scholar
  42. 42.
    M. Eigen, K. Kustin and G. Maass, The rate of hydration of SO2 in aqueous solution, Z. Phys. Chem. N.F. 30, 130 (1961).CrossRefGoogle Scholar
  43. 43.
    Gmelin’s Handbuch der Anorganischen Chemie, Verlag Chemie, No. 9, Part B2, 466 (1960).Google Scholar
  44. 44.
    D.W.A. Bourne, T. Higuchi and I.H. Pitman, Chemical equilibriums in solutions of bisulfite salts, J. Pharm. Sci. 63, 865 (1974).CrossRefGoogle Scholar
  45. 45.
    R.E. Conrick, T.M. Tam and E. von Deuster, Equilibrium constant for the dimerization of bisulfite ion to form S2052−, Inorg. Chem. 21, 103 (1982).CrossRefGoogle Scholar
  46. 46.
    R.S. Murray, D.R. Stranks and J.K. Yandell, The unusual reactivity of sulfite ions and sulfito ligands, J. Chem. Soc. Chem. Commun., 604 (1969).Google Scholar
  47. 47.
    S.M. Farrell and R.S. Murray, An intermediate in the reaction between trans - aquabis(ethylenediamine)sulfitocobalt(III) and sulfite ion in aqueous solution, J. Chem. Soc. Dalton, 322 (1977).Google Scholar
  48. 48.
    M.A. Thacker and W.C.E. Higginson, Kinetics of hydrolysis of di-μ-hydroxo- bis(nitrilotriacetatocobaltate(III)) to diaquo(nitrilotriacetato)cobalt(III), and some reactions of the latter with non-metallic substrates in aqueous solution, J. Chem. Soc. Dalton, 704 (1975).Google Scholar
  49. 49.
    D.W. Carlyle and E.L. King, The influence of sulfite ion upon the rate of aquation of various complexes of chromium(III) ion. The stability of sulfitochromium(III) ion, Inorg. Chem. 9, 2333 (1970).CrossRefGoogle Scholar
  50. 50.
    Gy. Bazsa and H. Diebler, Kinetics of the rapid interaction of chromium(III) with iodate and sulfite, React. Kinet. Catal. Lett. 2, 217 (1975).CrossRefGoogle Scholar
  51. 51.
    A.D. James and R.S. Murray, Some reactions of pentacyanosulfitoferrate(II) with oxidising agents, J. Chem. Soc. Dalton, 319 (1977).Google Scholar
  52. 52.
    R. van Eldik, J. von Jouanne and H. Kelm, Mechanistic information from l7O-NMR measurements. Evidence for the existence of oxygen-bonded (sulfito)pentaammine- cobalt(III) in weakly acidic aqueous solution, Inorg. Chem. 21, 2818 (1982).CrossRefGoogle Scholar
  53. 53.
    R. van Eldik, Kinetic data for SO2 uptake by Rh(III) and Cr(III) hydroxo complexes in aqueous solution, Inorg. Chim. Acta 42, 49 (1980).CrossRefGoogle Scholar
  54. 54.
    M.A. Thacker, K.L. Scott, M.E. Simpson, R.S. Murray and C.E. Higginson, Redox decomposition of trans-tetraammineaquosulfitocobalt(III) in aqueous solution, J. Chem. Soc. Dalton, 647 (1974).Google Scholar
  55. 55.
    K.L. Scott, Preparation and characterization of cis- and trans-tetraamminebis(sulfito)cobaltate(III) anions and the kinetics of redox decomposition in aqueous acid solution, J. Chem. Soc. Dalton, 1486 (1974).Google Scholar
  56. 56.
    R. van Eldik, unpublished results.Google Scholar
  57. 57.
    J. Kraft and R. van Eldik, Inorg. Chem. in press.Google Scholar
  58. 58.
    A.C. Dash, A.A. El-Awady and G.M. Harris, Kinetics and mechanism of the reactions of sulfito complexes in aqueous solution. 3. Formation, acid-catalyzed decomposition, and intramolecular isomerization of oxygen-bonded (αβS)-sulfitotetraethylenepent- amine)cobalt(III) ion and the hydrolysis of its sulfur-bonded analogue, Inorg. Chem. 20, 3160 (1981).CrossRefGoogle Scholar
  59. 59.
    A.A. El-Awady and G.M. Harris, Kinetics and mechanism of the reactions of sulfito complexes in aqueous solution. 2. Formation and aquation of aquo(0-sulfito)(2,2′,2″- triaminotriethylamine)cobalt(III) ion, Inorg. Chem. 20, 1660 (1981).CrossRefGoogle Scholar
  60. 60.
    A.A. El-Awady and G.M. Harris, Kinetics and mechanism of the reactions of sulfito complexes in aqueous solution. 4. Intramolecular electron-transfer and sulfito ligand addition reactions of aquo(0-sulfito)(2,2,′,2″-triaminotriethylamine)cobalt(III) ion, Inorg. Chem. 20, 4251 (1981).CrossRefGoogle Scholar
  61. 61.
    K.C. Koshy and G.M. Harris, Kinetics and mechanism of the reactions of sulfite complexes in aqueous solution. 5. Formation, isomerization and sulfite addition reactions of oxygen-bonded (sulfito)pentaammineplatinum(IV) ion and the subsequent intramolecular redox reactions of the sulfur-bonded intermediate, cis-di(sulfito) - tetraammineplatinum(IV) ion, Inorg. Chem., 22, 2947 (1983).CrossRefGoogle Scholar
  62. 62.
    K.C. Koshy and G.M. Harris, prepared for publication.Google Scholar
  63. 63.
    U. Spitzer and R. van Eldik, Kinetics and mechanisms of the formation, substitution and aquation reactions of sulfur-bonded (sulfito)amminecobalt(III) complexes in aqueous solution, Inorg. Chem. 21, 4008 (1982).CrossRefGoogle Scholar
  64. 64.
    G.J. Kubas, Diagnostic features of transiti on-metal-SO2 coordination geometries, Inorg. Chem. 18, 182 (1979).CrossRefGoogle Scholar
  65. 65.
    D.C. Moody and R.R. Ryan, Pyramidal metal-sulfur dioxide coordination. Chemistry of Pt(SO2)2(PPh3)3 and synthesis and molecular structure of Pt3(SO2)3(PPh3)3.C7H8.SO2, Inorg. Chem. 16, 1052 (1977).CrossRefGoogle Scholar
  66. 66.
    M. Cowie and S.K. Dwight, Binuclear rhodium complexes. Their chemistry with sulfur dioxide and the structure of [Rh2Cl2(μ-SO2)((C6H5)2PCH2P(C6H5)2)2], Inorg. Chem. 19, 209 (1980).CrossRefGoogle Scholar
  67. 67.
    C.E. Briant, D.G. Evans and D.M. Mingos, General synthetic route for SO2 cluster compounds of platinum and the structural characterization of Pt5(μ-CO)2(μ- S02)3(CO)(PPh3)4, J. Chem. Soc. Chem. Commun., 1144 (1982).Google Scholar
  68. 68.
    G. Stedman, Reaction mechanisms of inorganic nitrogen compounds, Adv. Inorg. Chem. Radiochem. 22, 143 (1979).Google Scholar
  69. 69.
    D.A. Buckingham, I.I. Olsen, A.M. Sargeson and H. Satrapa, The mechanism of substitution reactions of pentaamminecobalt(III) complexes. Product distributions in the induced aquation of some Co(NH3)5X2+ ions in the presence of added anions, Inorg. Chem. 6, 1027 (1967).CrossRefGoogle Scholar
  70. 70.
    R.G. Pearson, P.M. Henry, J.G. Bergmann and F. Basolo, Mechanism of substitution reactions of complex ions. 6. Formation of nitrito- and nitrocobalt(III) complexes. O-nitrosation, J. Am. Chem. Soc. 76, 5920 (1954).CrossRefGoogle Scholar
  71. 71.
    R.K. Murmann and H. Taube, The mechanism of the formation and rearrangement of nitritocobalt(III) ammines, J. Am. Chem. Soc. 78, 4886 (1956).CrossRefGoogle Scholar
  72. 72.
    M. Mares, D.A. Palmer and H. Kelm, Activation volumes for the linkage isomerization reactions of nitritopentaammine complexes of Co(III), Rh(III) and Ir(III) in aqueous solution, Inorg. Chim. Acta 27, 153 (1978).CrossRefGoogle Scholar
  73. 73.
    H. Ghazi-Bajat, R. van Eldik and H. Kelm, Kinetics and mechanism of the formation of nitritopentaminecobalt(III) in aqueous acidic solution, Inorg. Chim. Acta 6O, 81 (1982).CrossRefGoogle Scholar
  74. 74.
    A. Huss, P.K. Lim and C.A. Eckert, Oxidation of aqueous sulfur dioxide. 1. Homogeneous Mn(II) and Fe(II) catalysis at low pH, J. Phys. Chem. 86, 4224 (1982).CrossRefGoogle Scholar
  75. 75.
    R.B. Martin, Kinetic studies of sulfite oxidation in aqueous solution, Aerospace Corporation, 1982.Google Scholar
  76. 76.
    S. Fuzzi, Study of iron(III) catalyzed sulfur dioxide oxidation in aqueous solution over a wide range of pH, Atmos. Environ. 12, 1439 (1978).CrossRefGoogle Scholar
  77. 77.
    A. Huss, P.K. Lim and C.A. Eckert, Oxidation of aqueous sulfur dioxide. 2. High- pressure studies and proposed reaction mechanisms, J. Phys. Chem. 86, 4229 (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Rudi van Eldik
    • 1
  1. 1.Institute for Physical ChemistryJ. W. Goethe-UniversityFrankfurt/MainGermany

Personalised recommendations