Skip to main content

Transition Metals as Potential Catalysts in Atmospheric Oxidation Processes

  • Conference paper
Chemistry of Multiphase Atmospheric Systems

Part of the book series: NATO ASI Series ((ASIG,volume 6))

Abstract

In addition to the photochemical free radical pathways involving O3, OH, H2O2, HO2, RO2 and O(3P) as oxidizing agents for atmospheric oxidation processes, substantial evidence for transition metal catalyzed pathways has been reported. In these homogeneous aqueous-phase oxidation processes the initial step usually involves the formation of a metal complex with the species to be oxidized, which is the basis for the catalytic activity.

In this contribution the general behaviour of transition metal ions in aqueous solution is discussed with emphasis on: chemical forms, equilibria, solubility and stability of different oxidation states, complex formation ability, reaction modes and associated mechanisms, redox properties. The interaction of transition metal ions with dissolved gases such as CO2, SO2 and their conjugated bases, and the reactivity of the produced complexes including elimination, aquation, redox and photochemical reactions is treated in detail. The relevance of the described processes in atmospheric oxidation reactions is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.R. Ember, Acid pollutants: hitchhikers to ride the wind, Chem. Eng. News, Sept. 14, 20 (1981).

    Google Scholar 

  2. T.E. Graedel and C.J. Weschler, Chemistry with aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space Phys. 19, 505 (1981).

    Article  CAS  Google Scholar 

  3. G. Gravenhorst, S. Beilke, M. Betz and H.-W. Georgii, Sulfur dioxide absorbed in rain water, in “Effects of acid precipitation of terrestrial ecosystems”, T.C. Hutchinson and M. Havas (Eds.), Plenum Publishing Co., 41 (1980).

    Google Scholar 

  4. J.J. Morgan, Factors governing the pH, availability of H+, and oxidation capacity of rain, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 17 (1982).

    Google Scholar 

  5. W.L. Chameides and D.D. Davis, Chemistry in the troposphere, Chem. Eng. News, Oct. 4, 39 (1982).

    Google Scholar 

  6. H. Niki, Homogeneous gas phase oxidation processes in the troposphere, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 301 (1982.)

    Google Scholar 

  7. R.J. Cicerone, Tropospheric gases, aerosols and photochemical reactions group report, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 357 (1982).

    Google Scholar 

  8. T.E. Graedel, Aqueous chemistry in the atmosphere group report, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 93 (1982).

    Google Scholar 

  9. A. Huss, P.K. Lim and C.A. Eckert, On the uncatalyzed oxidation of sulfur(IV) in aqueous solutions, J. Am. Chem. Soc. 100, 6252 (1978).

    Article  CAS  Google Scholar 

  10. P.K. Lim, A. Huss and C.A. Eckert, Oxidation of aqueous sulfur dioxide. 3. The effects of chelating agents and phenolic antioxidants, J. Phys. Chem. 86, 4233 (1982).

    Article  CAS  Google Scholar 

  11. S.A. Penkett, Laboratory studies of S(IV) to S(VI), this volume.

    Google Scholar 

  12. J.H. Overton, V.P. Aneja and J.L. Durham, Production of sulfate in rain and raindrops in polluted atmospheres, Atmos. Environ. 13, 355 (1979).

    Article  CAS  Google Scholar 

  13. Research priorities and criteria to establish factors which govern precipitation chemistry - Workshop report, p 3–10, 1982 (in press).

    Google Scholar 

  14. F.E. Brinckman, G.J. Olson and W.P. Iverson, in “Atmospheric Chemistry”, E.D. Goldberg (Ed.), Springer-Verlag, 231 (1982).

    Google Scholar 

  15. R. van Eldik and G.M. Harris, Kinetics and mechanism of the formation, acid- catalyzed decomposition and intramolecular redox reaction of oxygen-bonded sulfitopentaamminecobalt(III) ions in aqueous solution, Inorg. Chem. 19, 880 (1980).

    Article  Google Scholar 

  16. E. Chaffee, T.P. Dasgupta and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 5. Carbon dioxide uptake by hydroxo- pentaamminecobalt(III)ion to form carbonatopentaamminecobalt(III) ion, J. Am. Chem. Soc. 95, 4169 (1973).

    Article  CAS  Google Scholar 

  17. D.A. Palmer, R. van Eldik, H. Kelm and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 17. Carbon dioxide uptake by and decarboxylation of the cis-bis(ethylenediamine)rhodium(III) system in aqueous solution, Inorg. Chem. 19, 1009 (1980).

    Article  CAS  Google Scholar 

  18. R. van Eldik, D.A. Palmer and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 18. Carbon dioxide uptake by and decarboxylation of the trains -bis (e thy lenedi amine) rhodium (III) system in aqueous solution, Inorg. Chem. 19, 3673 (1980).

    Article  Google Scholar 

  19. R. van Eldik, D.A. Palmer, H. Kelm and G.M. Harris, Kinetics and mechanism of aquation and formation reactions of carbonato complexes. 20. Carbon dioxide uptake by and decarboxylation of trans-halogenobis(ethylenediamine)rhodium(III) complexes in aqueous solution, Inorg. Chem. 19, 3679 (1980).

    Article  Google Scholar 

  20. A. Jost, Fast reactions in solutions at high pressures. 3. The effect of pressure on the reactions of Fe(III) ions with thiocyanate in water up to 2 kbar at 25°C, Ber. Bunsenges. Phys. Chem. 80, 316 (1976).

    CAS  Google Scholar 

  21. T.W. Swaddle and A.E. Merbach, High-pressure oxygen-17 fourier transform nuclear magnetic resonance spectroscopy. Mechanism of water exchange on iron(III) in acidic aqueous solution, Inorg. Chem. 20, 4212 (1981).

    Article  CAS  Google Scholar 

  22. R. Doss, R. van Eldik and H. Kelm, A reinvestigation of the effect of pressure on the reaction of Fe(III) with thiocyanate ions in aqueous solution, Ber. Bunsenges. Phys. Chem. 86, 925 (1982).

    CAS  Google Scholar 

  23. C.J. Hipp and D.H. Busch, Ligand reactions - the effect of metal complexes on chemical processes, in “Coordination Chemistry Vol. 2”, A.E. Martell (Ed.), ACS Monograph 174, 221 (1978).

    Google Scholar 

  24. D.A. Palmer and R. van Eldik, The Chemistry of metal carbonato and carbon dioxide complexes, Chem. Rev. 83, 651 (1983).

    Article  CAS  Google Scholar 

  25. R. van Eldik, Reactions involving coordinated ligands, in “Adv. in inorganic and bioinorganic mechanisms” Vol. 3, A.G. Sykes (Ed.), Academic Press.

    Google Scholar 

  26. M.L. Tobe, “Mechanisms of inorganic reactions”, Nelson, 51 (1972).

    Google Scholar 

  27. D.W. Margerum, G.R. Cayley, D.C. Weatherburn and G.K. Pagenkopf, Kinetics and mechanisms of complex formation and ligand exchange, in “Coordination Chemistry Vol. 2”, A.E. Martell (Ed.), ACS Monograph 174, 1 (1978).

    Google Scholar 

  28. H. Kruger, Techniques for the kinetic study of fast reactions in solution, Chem. Soc. Rev. 11, 227 (1982).

    Article  CAS  Google Scholar 

  29. A.E. Merbach, The elucidation of solvent exchange mechanisms by high-pressure NMR studies, Pure Appl. Chem. 54, 1479 (1982).

    Article  CAS  Google Scholar 

  30. R. van Eldik and H. Kelm, Interpretation of the volume of activation of inorganic reactions in solution, Rev. Phys. Chem. Jpn. 50, 185 (1980).

    Google Scholar 

  31. D.E. Pennington, Oxidation-reduction reactions of coordination complexes, in “Coordination Chemistry Vol. 2”, A.E. Martell (Ed.), ACS Monograph 174, 476 (1978).

    Google Scholar 

  32. K.S. Johnson, Carbon dioxide hydration and dehydration kinetics in seawater, Limnol. Oceanogr. 27, 849 (1982).

    Article  CAS  Google Scholar 

  33. R. van Eldik and D.A. Palmer, Effect of pressure on the kinetics of the dehydration of cabonic acid and the hydrolysis of CO2 in aqueous solution, J. Sol. Chem. 11, 339 (1982).

    Google Scholar 

  34. K.F. Wissbrun, D.M. French and A. Patterson, The true ionization constant of carbonic acid in aqueous solution from 5 to 45°C, J. Phys. Chem. 58, 693 (1954).

    Article  CAS  Google Scholar 

  35. M. Paabo and R.G. Bates, Dissociation of deuteriocarbonate ion in deuterium oxide from 5 to 50°C, J. Phys. Chem. 73, 3014 (1969).

    Article  CAS  Google Scholar 

  36. J.P. Hunt, A.C. Rutenberg and H. Taube, Mechanism of aquation of carbonatopenta- amminecobaltic ion in acid solution, J. Am. Chem. Soc. 74, 268 (1952).

    Article  CAS  Google Scholar 

  37. C.A. Bun ton and D.R. Llewellyn, Tracer studies in the aquation and hydrolysis of cobalt complexes, J. Chem. Soc. 1692 (1953).

    Google Scholar 

  38. U. Spitzer, R. van Eldik and H. Kelm, Mechanistic information from the effect of pressure on the formation and acid-catalyzed aquation reactions of carbonatopenta- amminecobalt(III), -rhodium(III) and -iridium(III) ions in aqueous solution, Inorg. Chem., 21, 2821 (1982).

    Article  CAS  Google Scholar 

  39. F.A. Cotton and G. Wilkinson, “Inorganic Chemistry”, 4th Ed., John Wiley, 540 (1980).

    Google Scholar 

  40. M. Schmidt in “Sulfur in organic and inorganic chemistry Vol. 2”, A. Senning (Ed.), Marcel Dekker, 84 (1972).

    Google Scholar 

  41. R.H. Betts and R.H. Voss, The kinetics of oxygen exchange between the sulfite ion and water, Can. J. Chem. 48, 2035 (1970).

    Article  CAS  Google Scholar 

  42. M. Eigen, K. Kustin and G. Maass, The rate of hydration of SO2 in aqueous solution, Z. Phys. Chem. N.F. 30, 130 (1961).

    Article  CAS  Google Scholar 

  43. Gmelin’s Handbuch der Anorganischen Chemie, Verlag Chemie, No. 9, Part B2, 466 (1960).

    Google Scholar 

  44. D.W.A. Bourne, T. Higuchi and I.H. Pitman, Chemical equilibriums in solutions of bisulfite salts, J. Pharm. Sci. 63, 865 (1974).

    Article  CAS  Google Scholar 

  45. R.E. Conrick, T.M. Tam and E. von Deuster, Equilibrium constant for the dimerization of bisulfite ion to form S2052−, Inorg. Chem. 21, 103 (1982).

    Article  Google Scholar 

  46. R.S. Murray, D.R. Stranks and J.K. Yandell, The unusual reactivity of sulfite ions and sulfito ligands, J. Chem. Soc. Chem. Commun., 604 (1969).

    Google Scholar 

  47. S.M. Farrell and R.S. Murray, An intermediate in the reaction between trans - aquabis(ethylenediamine)sulfitocobalt(III) and sulfite ion in aqueous solution, J. Chem. Soc. Dalton, 322 (1977).

    Google Scholar 

  48. M.A. Thacker and W.C.E. Higginson, Kinetics of hydrolysis of di-μ-hydroxo- bis(nitrilotriacetatocobaltate(III)) to diaquo(nitrilotriacetato)cobalt(III), and some reactions of the latter with non-metallic substrates in aqueous solution, J. Chem. Soc. Dalton, 704 (1975).

    Google Scholar 

  49. D.W. Carlyle and E.L. King, The influence of sulfite ion upon the rate of aquation of various complexes of chromium(III) ion. The stability of sulfitochromium(III) ion, Inorg. Chem. 9, 2333 (1970).

    Article  CAS  Google Scholar 

  50. Gy. Bazsa and H. Diebler, Kinetics of the rapid interaction of chromium(III) with iodate and sulfite, React. Kinet. Catal. Lett. 2, 217 (1975).

    Article  CAS  Google Scholar 

  51. A.D. James and R.S. Murray, Some reactions of pentacyanosulfitoferrate(II) with oxidising agents, J. Chem. Soc. Dalton, 319 (1977).

    Google Scholar 

  52. R. van Eldik, J. von Jouanne and H. Kelm, Mechanistic information from l7O-NMR measurements. Evidence for the existence of oxygen-bonded (sulfito)pentaammine- cobalt(III) in weakly acidic aqueous solution, Inorg. Chem. 21, 2818 (1982).

    Article  Google Scholar 

  53. R. van Eldik, Kinetic data for SO2 uptake by Rh(III) and Cr(III) hydroxo complexes in aqueous solution, Inorg. Chim. Acta 42, 49 (1980).

    Article  Google Scholar 

  54. M.A. Thacker, K.L. Scott, M.E. Simpson, R.S. Murray and C.E. Higginson, Redox decomposition of trans-tetraammineaquosulfitocobalt(III) in aqueous solution, J. Chem. Soc. Dalton, 647 (1974).

    Google Scholar 

  55. K.L. Scott, Preparation and characterization of cis- and trans-tetraamminebis(sulfito)cobaltate(III) anions and the kinetics of redox decomposition in aqueous acid solution, J. Chem. Soc. Dalton, 1486 (1974).

    Google Scholar 

  56. R. van Eldik, unpublished results.

    Google Scholar 

  57. J. Kraft and R. van Eldik, Inorg. Chem. in press.

    Google Scholar 

  58. A.C. Dash, A.A. El-Awady and G.M. Harris, Kinetics and mechanism of the reactions of sulfito complexes in aqueous solution. 3. Formation, acid-catalyzed decomposition, and intramolecular isomerization of oxygen-bonded (αβS)-sulfitotetraethylenepent- amine)cobalt(III) ion and the hydrolysis of its sulfur-bonded analogue, Inorg. Chem. 20, 3160 (1981).

    Article  CAS  Google Scholar 

  59. A.A. El-Awady and G.M. Harris, Kinetics and mechanism of the reactions of sulfito complexes in aqueous solution. 2. Formation and aquation of aquo(0-sulfito)(2,2′,2″- triaminotriethylamine)cobalt(III) ion, Inorg. Chem. 20, 1660 (1981).

    Article  CAS  Google Scholar 

  60. A.A. El-Awady and G.M. Harris, Kinetics and mechanism of the reactions of sulfito complexes in aqueous solution. 4. Intramolecular electron-transfer and sulfito ligand addition reactions of aquo(0-sulfito)(2,2,′,2″-triaminotriethylamine)cobalt(III) ion, Inorg. Chem. 20, 4251 (1981).

    Article  CAS  Google Scholar 

  61. K.C. Koshy and G.M. Harris, Kinetics and mechanism of the reactions of sulfite complexes in aqueous solution. 5. Formation, isomerization and sulfite addition reactions of oxygen-bonded (sulfito)pentaammineplatinum(IV) ion and the subsequent intramolecular redox reactions of the sulfur-bonded intermediate, cis-di(sulfito) - tetraammineplatinum(IV) ion, Inorg. Chem., 22, 2947 (1983).

    Article  CAS  Google Scholar 

  62. K.C. Koshy and G.M. Harris, prepared for publication.

    Google Scholar 

  63. U. Spitzer and R. van Eldik, Kinetics and mechanisms of the formation, substitution and aquation reactions of sulfur-bonded (sulfito)amminecobalt(III) complexes in aqueous solution, Inorg. Chem. 21, 4008 (1982).

    Article  CAS  Google Scholar 

  64. G.J. Kubas, Diagnostic features of transiti on-metal-SO2 coordination geometries, Inorg. Chem. 18, 182 (1979).

    Article  CAS  Google Scholar 

  65. D.C. Moody and R.R. Ryan, Pyramidal metal-sulfur dioxide coordination. Chemistry of Pt(SO2)2(PPh3)3 and synthesis and molecular structure of Pt3(SO2)3(PPh3)3.C7H8.SO2, Inorg. Chem. 16, 1052 (1977).

    Article  CAS  Google Scholar 

  66. M. Cowie and S.K. Dwight, Binuclear rhodium complexes. Their chemistry with sulfur dioxide and the structure of [Rh2Cl2(μ-SO2)((C6H5)2PCH2P(C6H5)2)2], Inorg. Chem. 19, 209 (1980).

    Article  CAS  Google Scholar 

  67. C.E. Briant, D.G. Evans and D.M. Mingos, General synthetic route for SO2 cluster compounds of platinum and the structural characterization of Pt5(μ-CO)2(μ- S02)3(CO)(PPh3)4, J. Chem. Soc. Chem. Commun., 1144 (1982).

    Google Scholar 

  68. G. Stedman, Reaction mechanisms of inorganic nitrogen compounds, Adv. Inorg. Chem. Radiochem. 22, 143 (1979).

    Google Scholar 

  69. D.A. Buckingham, I.I. Olsen, A.M. Sargeson and H. Satrapa, The mechanism of substitution reactions of pentaamminecobalt(III) complexes. Product distributions in the induced aquation of some Co(NH3)5X2+ ions in the presence of added anions, Inorg. Chem. 6, 1027 (1967).

    Article  CAS  Google Scholar 

  70. R.G. Pearson, P.M. Henry, J.G. Bergmann and F. Basolo, Mechanism of substitution reactions of complex ions. 6. Formation of nitrito- and nitrocobalt(III) complexes. O-nitrosation, J. Am. Chem. Soc. 76, 5920 (1954).

    Article  CAS  Google Scholar 

  71. R.K. Murmann and H. Taube, The mechanism of the formation and rearrangement of nitritocobalt(III) ammines, J. Am. Chem. Soc. 78, 4886 (1956).

    Article  CAS  Google Scholar 

  72. M. Mares, D.A. Palmer and H. Kelm, Activation volumes for the linkage isomerization reactions of nitritopentaammine complexes of Co(III), Rh(III) and Ir(III) in aqueous solution, Inorg. Chim. Acta 27, 153 (1978).

    Article  CAS  Google Scholar 

  73. H. Ghazi-Bajat, R. van Eldik and H. Kelm, Kinetics and mechanism of the formation of nitritopentaminecobalt(III) in aqueous acidic solution, Inorg. Chim. Acta 6O, 81 (1982).

    Article  Google Scholar 

  74. A. Huss, P.K. Lim and C.A. Eckert, Oxidation of aqueous sulfur dioxide. 1. Homogeneous Mn(II) and Fe(II) catalysis at low pH, J. Phys. Chem. 86, 4224 (1982).

    Article  CAS  Google Scholar 

  75. R.B. Martin, Kinetic studies of sulfite oxidation in aqueous solution, Aerospace Corporation, 1982.

    Google Scholar 

  76. S. Fuzzi, Study of iron(III) catalyzed sulfur dioxide oxidation in aqueous solution over a wide range of pH, Atmos. Environ. 12, 1439 (1978).

    Article  CAS  Google Scholar 

  77. A. Huss, P.K. Lim and C.A. Eckert, Oxidation of aqueous sulfur dioxide. 2. High- pressure studies and proposed reaction mechanisms, J. Phys. Chem. 86, 4229 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Eldik, R. (1986). Transition Metals as Potential Catalysts in Atmospheric Oxidation Processes. In: Jaeschke, W. (eds) Chemistry of Multiphase Atmospheric Systems. NATO ASI Series, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70627-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70627-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70629-5

  • Online ISBN: 978-3-642-70627-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics