Skip to main content

Time Coding and Periodicity Pitch

  • Conference paper
Time Resolution in Auditory Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

A psychophysical attribute of periodic acoustic signals is pitch. All signals with the same period have the same pitch, irrespectively of their actual waveforms which are determined by the amplitudes and phases of their frequency components. For example, a sum of successive harmonics has the same period and elicits the same pitch as the fundamental (fo) even if the lowest harmonic is much greater than fo. This is the case of the “missing fundamental” and the perceipt was called “residue” (Schouten 1940a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bilsen FA, Goldstein JL (1974) Pitch of dichotically delayed noise and its possible spectral basis. J Acoust Soc Amer 55:292–296

    Article  CAS  Google Scholar 

  • Boer E de (1956) Pitch of inharmonic signals. Nature 178:535–536

    Article  Google Scholar 

  • Boer E de (1976) On the “residue” and auditory pitch perception. In: Keidel WP and Neff WD (eds) Handbook of sensory physiology. V/3, Springer, Berlin, pp 479–583

    Google Scholar 

  • Evans EF (1978) Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiol-ogy 17:369–420

    CAS  Google Scholar 

  • Evans EF (1983) Pitch and cochlear nerve fibre temporal discharge patterns. In: Klinke R and Hartmann R (eds) Hearing — physiological bases and psychophysics. Springer, Berlin, pp 140–145

    Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Amer 54:1496–1516

    Article  CAS  Google Scholar 

  • Goldstein JL (1978) Mechanisms of signal analysis and pattern perception in periodicity pitch. Audiology 17:421–445

    Article  PubMed  CAS  Google Scholar 

  • Helmholtz H von (1862) Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg, Braunschweig

    Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Amer 68:1115–1122

    Article  CAS  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas ED, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT-Press, Cambridge, Mass.

    Google Scholar 

  • Langner G (1978) The periodicity matrix. A correlation model for central auditory frequency analysis. Verh Dtsch Zool Ges., p 194

    Google Scholar 

  • Langner G (1981) Neuronal mechanisms of pitch analysis in the time domain. Exp Brain Res 44:450–454

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1983a) Evidence for neuronal periodicity detection in the auditory system of the Guinea fowl: implications for pitch analysis in the time domain. Exp Brain Res 52:333–355

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1983b) Pitch of AM-signals: Evidence for a correlation analysis in the human auditory system. Soc Neuroscience, 13th annual meeting, Boston, 193.3

    Google Scholar 

  • Langner G, Schreiner C (1985) Periodicity coding in the inferior colliculus of the cat: I. Neuronal mechanisms (in prep.)

    Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experien-tia 7/4:128–134

    Article  Google Scholar 

  • Moore BCJ, Glasberg BR (1983) Forward masking patterns for harmonic complex tones. J Acoust Soc Amer 73:1682–1685

    Article  CAS  Google Scholar 

  • Ohm GS (1843) íber die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann Phys Chem 59:513–565

    Article  Google Scholar 

  • Pfeiffer RR (1966a) Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154:667–668

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1966b) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone burst stimulation. Exp Brain Res 1:220–235

    Article  PubMed  CAS  Google Scholar 

  • Ritsma RJ (1962) Existence region of the tonal residue. J Acoust Soc Amer 34:1224–1229

    Article  Google Scholar 

  • Ritsma RJ (1970) Periodicity detection. In: Frequency analysis and periodicity detection in hearing. (Plomp R and Smoorenburg GF, eds), Sijthoff, Leiden, pp 250–263

    Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 27:768–787

    Google Scholar 

  • Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Amer 66:470–479

    Article  CAS  Google Scholar 

  • Schouten JF (1940a) The residue, a new component in subjective sound analysis. Proc Kon Acad Wetensch 43:356–365

    Google Scholar 

  • Schouten JF (1940b) De toonhoogtegewaarwording. Philips Technisch Tijdschr 5:298–306

    Google Scholar 

  • Schouten JF, Ritsma RJ, Cardozo BL (1962) Pitch of the residue. J Acoust Soc Amer 34:1418–1424

    Article  Google Scholar 

  • Seebeck A (1841) Beobachtungen über einige Bedingungen der Entstehung von Tonen. Ann Phys Chem 53:417–436

    Article  Google Scholar 

  • Schreiner C, Langner G (1985) Periodicity coding in the inferior colliculus of the cat: II. Topographical organization (in prep.)

    Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Amer 73:1266–1276

    Article  CAS  Google Scholar 

  • Terhardt E (1972) Zur Tonhöhenwahrnehmung von Klängen. II. Ein Funktionsschema. Acustica 26:187–199

    Google Scholar 

  • Walliser K (1969) Über ein Funktionsschema für die Bildung der Periodentonhöhe aus dem Schallreiz. Kybernetik 6:65–72

    PubMed  CAS  Google Scholar 

  • Wever EG (1949) Theory of hearing. Wiley, New York

    Google Scholar 

  • Wightman FL (1973) The pattern-transformation model of pitch. J Acoust Soc Amer 54:407–416

    Article  CAS  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. J Acoust Soc Amer 66:1381–1403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langner, G. (1985). Time Coding and Periodicity Pitch. In: Michelsen, A. (eds) Time Resolution in Auditory Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70622-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70622-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70624-0

  • Online ISBN: 978-3-642-70622-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics