Time Coding and Periodicity Pitch

  • G. Langner
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


A psychophysical attribute of periodic acoustic signals is pitch. All signals with the same period have the same pitch, irrespectively of their actual waveforms which are determined by the amplitudes and phases of their frequency components. For example, a sum of successive harmonics has the same period and elicits the same pitch as the fundamental (fo) even if the lowest harmonic is much greater than fo. This is the case of the “missing fundamental” and the perceipt was called “residue” (Schouten 1940a).


Auditory System Inferior Colliculus Basilar Membrane Cochlear Nucleus Periodicity Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bilsen FA, Goldstein JL (1974) Pitch of dichotically delayed noise and its possible spectral basis. J Acoust Soc Amer 55:292–296CrossRefGoogle Scholar
  2. Boer E de (1956) Pitch of inharmonic signals. Nature 178:535–536CrossRefGoogle Scholar
  3. Boer E de (1976) On the “residue” and auditory pitch perception. In: Keidel WP and Neff WD (eds) Handbook of sensory physiology. V/3, Springer, Berlin, pp 479–583Google Scholar
  4. Evans EF (1978) Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiol-ogy 17:369–420Google Scholar
  5. Evans EF (1983) Pitch and cochlear nerve fibre temporal discharge patterns. In: Klinke R and Hartmann R (eds) Hearing — physiological bases and psychophysics. Springer, Berlin, pp 140–145Google Scholar
  6. Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Amer 54:1496–1516CrossRefGoogle Scholar
  7. Goldstein JL (1978) Mechanisms of signal analysis and pattern perception in periodicity pitch. Audiology 17:421–445PubMedCrossRefGoogle Scholar
  8. Helmholtz H von (1862) Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Vieweg, BraunschweigGoogle Scholar
  9. Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Amer 68:1115–1122CrossRefGoogle Scholar
  10. Kiang NYS, Watanabe T, Thomas ED, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT-Press, Cambridge, Mass.Google Scholar
  11. Langner G (1978) The periodicity matrix. A correlation model for central auditory frequency analysis. Verh Dtsch Zool Ges., p 194Google Scholar
  12. Langner G (1981) Neuronal mechanisms of pitch analysis in the time domain. Exp Brain Res 44:450–454PubMedCrossRefGoogle Scholar
  13. Langner G (1983a) Evidence for neuronal periodicity detection in the auditory system of the Guinea fowl: implications for pitch analysis in the time domain. Exp Brain Res 52:333–355PubMedCrossRefGoogle Scholar
  14. Langner G (1983b) Pitch of AM-signals: Evidence for a correlation analysis in the human auditory system. Soc Neuroscience, 13th annual meeting, Boston, 193.3Google Scholar
  15. Langner G, Schreiner C (1985) Periodicity coding in the inferior colliculus of the cat: I. Neuronal mechanisms (in prep.)Google Scholar
  16. Licklider JCR (1951) A duplex theory of pitch perception. Experien-tia 7/4:128–134CrossRefGoogle Scholar
  17. Moore BCJ, Glasberg BR (1983) Forward masking patterns for harmonic complex tones. J Acoust Soc Amer 73:1682–1685CrossRefGoogle Scholar
  18. Ohm GS (1843) íber die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann Phys Chem 59:513–565CrossRefGoogle Scholar
  19. Pfeiffer RR (1966a) Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154:667–668PubMedCrossRefGoogle Scholar
  20. Pfeiffer RR (1966b) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone burst stimulation. Exp Brain Res 1:220–235PubMedCrossRefGoogle Scholar
  21. Ritsma RJ (1962) Existence region of the tonal residue. J Acoust Soc Amer 34:1224–1229CrossRefGoogle Scholar
  22. Ritsma RJ (1970) Periodicity detection. In: Frequency analysis and periodicity detection in hearing. (Plomp R and Smoorenburg GF, eds), Sijthoff, Leiden, pp 250–263Google Scholar
  23. Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 27:768–787Google Scholar
  24. Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Amer 66:470–479CrossRefGoogle Scholar
  25. Schouten JF (1940a) The residue, a new component in subjective sound analysis. Proc Kon Acad Wetensch 43:356–365Google Scholar
  26. Schouten JF (1940b) De toonhoogtegewaarwording. Philips Technisch Tijdschr 5:298–306Google Scholar
  27. Schouten JF, Ritsma RJ, Cardozo BL (1962) Pitch of the residue. J Acoust Soc Amer 34:1418–1424CrossRefGoogle Scholar
  28. Seebeck A (1841) Beobachtungen über einige Bedingungen der Entstehung von Tonen. Ann Phys Chem 53:417–436CrossRefGoogle Scholar
  29. Schreiner C, Langner G (1985) Periodicity coding in the inferior colliculus of the cat: II. Topographical organization (in prep.)Google Scholar
  30. Srulovicz P, Goldstein JL (1983) A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Amer 73:1266–1276CrossRefGoogle Scholar
  31. Terhardt E (1972) Zur Tonhöhenwahrnehmung von Klängen. II. Ein Funktionsschema. Acustica 26:187–199Google Scholar
  32. Walliser K (1969) Über ein Funktionsschema für die Bildung der Periodentonhöhe aus dem Schallreiz. Kybernetik 6:65–72PubMedGoogle Scholar
  33. Wever EG (1949) Theory of hearing. Wiley, New YorkGoogle Scholar
  34. Wightman FL (1973) The pattern-transformation model of pitch. J Acoust Soc Amer 54:407–416CrossRefGoogle Scholar
  35. Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. J Acoust Soc Amer 66:1381–1403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • G. Langner
    • 1
  1. 1.ZoologieDarmstadtFRGermany

Personalised recommendations