Skip to main content

From Simple to Complex: Pressure and Inert Gas Modulation of Nerve Cell Membrane Properties

  • Conference paper
  • 33 Accesses

Abstract

When subjected to high hydrostatic or helium pressure of approximately 2 – 1 0 MPA (20 – 100 atmospheres), vertebrates display symptoms of heightened neural excitation manifested as the High Pressure Neurological (or Nervous) Syndrome (HPNS) (Brauer, 1984). The syndrome includes, among other manifestations, tremors and convulsions. In anesthetized animals, an additional stimulatory effect of pressure is manifested as an increase in the amount of anesthetic required to prevent mobility (Miller, 1977). There are actually four different CNS responses to inert gases and pressure: (1) anesthesia (and inert gas narcosis); (2) the convulsions and tremors of the HPNS (3) the anti-anesthetic effects of pressure, and (4) the anti-HPNS effects of anesthetics. The cellular and molecular sites of HPNS and of pressure reversal of anesthesia are considered to be different because of dissimilarities in pharmacology and in pressure-anesthetic dose/response curves (Halsey, 1982), and because of the limited window of anesthetic and pressure exposure in which animals are both awake and seizure-free (Miller 1977). For neither phenomenon is the cellular basis known

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel, A., Gratton, D., Halsey, M.J., Wardley-Smith, B. (1980) Pressure reversal of the effect of urethane on the evoked somatosensory cortical response in the rat. Br. J. Pharmacol. 70, 241–247.

    Google Scholar 

  • Angel, A., Halsey, M.J., Little, H., Meldrum, B.S., Ross, J.A.S., Rostain, J.C., Wardley-Smith, B. (1984) Specific effects of drugs at pressure: animal investigations. Phil. Trans. Roy. Soc. Lond, B304, 85–94.

    Article  CAS  Google Scholar 

  • Bean, B.P., Shrager, P., Goldstein, D.A. (1981) Modification of sodium and potassium channel gating kinetics by ether and by halothane. J. Gen. Physiol. 77, 233–253.

    Google Scholar 

  • Bowser-Riley, F. (1984) Mechanistic studies on the high pressure nervous syndrome. Phil. Trans. Roy. Soc.Lond. B, 304, 31–41.

    Google Scholar 

  • Brauer, R.W. (1984) Hydrostatic pressure effects on the central nervous system: perspectives and outlook. Phil. Trans. Roy. Soc. Lond. B 304, 17–30.

    Google Scholar 

  • Campenot, R.B. (1975) The effects of high hydrostatic pressure on transmission at the crustacean neuromuscular junction. Comp. Biochem. Physiol. B52, 133–140.

    Google Scholar 

  • Conti, F., Fioravanti, R., Segal, J.R., Stuhmer, W. (1982) Pressure dependence of the sodium currents of squid giant axon. J. Memb. Biol. 69, 23–34.

    Google Scholar 

  • Grossman, Y., Kendig, J.J. (1982) General anesthetic block of a bifurcating axon. Brain Res. 245, 148–153.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, Y., Kendig, J.J.(1984) Pressure and temperature: timedependent modulation of membrane properties in a bifurcating axon. J. Neurophysiol. In press.

    Google Scholar 

  • Grossman, Y., Parnas, I., Spira, M.E. (1979) Ionic mechanisms involved in differential conduction of action potentials at high frequency in a branching axon. J. Physiol. 295, 307–322.

    PubMed  CAS  Google Scholar 

  • Grossman, Y., Kendig, J.J.(1984) Pressure and temperature: timedependent modulation of membrane properties in a bifurcating axon. J. Neurophysiol. In press.

    Google Scholar 

  • Haydon, D.A., Urban, B.W. (1983) The action of hydrocarbons and carbon tetrachloride on the sodium currents of the squid giant axon. J. Physiol. 338, 435–450.

    PubMed  CAS  Google Scholar 

  • Halsey, M.J. (1982) Effects of high pressure on the central nervous system. Physiol. Rev. 62, 1341–1377.

    Google Scholar 

  • Henderson, J.V., Lowenhaupt, M.T., Gilbert, D.L. (1977) Helium pressure alteration of function in squid giant synapse. Undersea Biomed. Res. 4, 19–26.

    Google Scholar 

  • Kendig, J.J. (1981) Barbiturates: active form and site of action at node of Ranvier sodium channels. J. Pharmacol. Exp. Ther. 218, 175–181.

    Google Scholar 

  • Kendig, J.J. (1984a) Ionic currents in vertebrate myelinated nerve at hyperbaric pressure. Am. J. Physiol. 246, C84–C90.

    PubMed  CAS  Google Scholar 

  • Kendig, J.J. (1984b) Nitrogen narcosis and pressure reversal of anesthetic effects in node of Ranvier. Am. J. Physiol. 246, C91–C95.

    PubMed  CAS  Google Scholar 

  • Kendig, J.J. (1984b) Nitrogen narcosis and pressure reversal of anesthetic effects in node of Ranvier. Am. J. Physiol. 246, C91–C95.

    PubMed  CAS  Google Scholar 

  • Kendig, J.J., Schneider, T.M., Cohen, E.N. (1978) Pressure, temperature and repetitive impulse generation in crustacean axons. J. Appl. Physiol. 45, 742–746.

    Google Scholar 

  • Kendig, J.J., Trudell, J.R., Cohen, E.N. (1975) Effects of pressure and anesthetics on conduction and synaptic transmission. J. Pharm. Exp. Ther. 195, 216–224.

    Google Scholar 

  • Miller, K.W. (1977) The opposing physiological effects of high pressure and inert gases. Fed. Proc. 36, 1663–1667.

    Google Scholar 

  • Parmentier, J.L., Shrivastav, B.B., Bennett, P.B. (1981) Hydrostatic pressure reduces synaptic efficiency by inhibiting transmitter release. Undersea Biomed. Res. 8, 175–183.

    Google Scholar 

  • Smith, E.B., Bowser-Riley, F. Pressure reversal and the pharmacology of the high pressure neurological syndrome. Molecular Mechanisms of Anesthesia, Plenum, NY. In press.

    Google Scholar 

  • Spira, M.E., Yarom, Y., Parnas, I. (1976) Modulation of spike frequency by regions of special axonal geometry and by synaptic inputs. J. Neurophysiol. 36, 882–899.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kendig, J.J. (1985). From Simple to Complex: Pressure and Inert Gas Modulation of Nerve Cell Membrane Properties. In: Péqueux, A.J.R., Gilles, R. (eds) High Pressure Effects on Selected Biological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70618-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70618-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15630-7

  • Online ISBN: 978-3-642-70618-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics