Skip to main content

Electrical and Mechanical Functions of Heart Cells at High Hydrostatic Pressure

  • Conference paper

Abstract

Prerequisite to safe, productive sojourns to the oceans’ depths is a thorough understanding of the biological effects of hydrostatic pressure, the sine qua non of all hyperbaric environments. Of immediate and practical concern are those actions of elevated hydrostatic pressure that alter normal function in vital tissues of the body. In this chapter I will discuss experimental findings that show hydrostatic pressure to be a factor determining the rate and rhythm of cardiac excitation and the force of cardiac contraction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brauer, R.W., Hogan, P.M., Hugon, M., MacDonald, A.G., Miller, K.W. (1982) Patterns of interaction of effects of the light metabolically inert gases with those of hydrostatic pressure assuch - a review. Undersea Biomed. Res. 9 (4), 353–396.

    CAS  Google Scholar 

  • Brown, D.E.S. (1957) Temperature-pressure relation in muscular contraction. In: Johnson, F.H. (ed), Influence of temperature on biological systems. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Cattell, M., Edwards, D.J. (1929) The influence of hydrostatic pressure on the contraction of cardiac muscle in relation to temperature. Am. J. Physiol. 93, 97–104.

    Google Scholar 

  • Conti, F., Fioravanti, R., Segal, J.R., Stuhmer, W. (1982) Pressure dependence of the sodium currents of squid giant axon. J. Memb. Biol. 69, 23–34.

    Google Scholar 

  • Doubt, T.J., Hogan, P.M. (1978) Effects of hydrostatic pressure on conduction and excitability in rabbit atria. J. Appl. Physiol. 45 (1), 24–32.

    PubMed  CAS  Google Scholar 

  • Doubt, T.J., Hogan, P.M. (1979). Action potential correlates of pressure-induced changes in cardiac conduction. J. Appl. Physiol. 47 (6), 1169–1175.

    PubMed  CAS  Google Scholar 

  • Doubt, T.J., Hogan, P.M. (1981) The arrhythmogenic potency of hydrostatic pressure on cardiac conduction. In: Bachrach, A.J., Matzen, M.M.(eds) Underwater Physiology VII. Proceedings of the Seventh Symposium on Underwater Physiology. Undersea Medical Society, Inc., Bethesda MD. pp. 235–240.

    Google Scholar 

  • Doubt, T.J., Hogan P.M. (1982) Combined effect of beating rate and hydrostatic pressure on excitation in cardiac muscle. Undersea Biomed. Res. 9 (3), 241–253.

    CAS  Google Scholar 

  • Edwards, D.J., Cattell, M. (1930) The action of compression on the contraction of heart muscle. Am. J. Physiol. 93, 90-96.

    Google Scholar 

  • Goldinger, J.M., Kang B.S., Choo, Y.E., Paganelli, C.V., Hong, S.K. (1980) Effect of hydrostatic pressure on ion transport and metabolism in human erythrocytes. J. Appl. Physiol. 49 (2), 224 - 231.

    PubMed  CAS  Google Scholar 

  • Johnson, S.M., Miller, K.W. (1975) The effect of pressure and volume of activation on the monovalent cation and glucose permeabilities of liposomes of varying composition. Biochem. Biophys. Acta, 375, 286-291.

    Google Scholar 

  • Ornhagen, H.C. (1979) Influence of nitrous oxide, nitrogen, neon, and helium on the beating frequency of the mouse sinus node at high pressure. Undersea Biomed. Res. 6 (1), 27 - 39.

    CAS  Google Scholar 

  • Ornhagen, H.C., Hogan, P.M. (1977) Hydrostatic pressure and mammalian cardiac pacemaker function. Undersea Biomed.Res. 4 (4), 347 – 358.

    PubMed  CAS  Google Scholar 

  • Wann, K.T., MacDonald, A.G. (1980) The effects of pressure on excitable cells. Comp. Biochem. Physiol. 66A, 1–12.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hogan, P.M. (1985). Electrical and Mechanical Functions of Heart Cells at High Hydrostatic Pressure. In: Péqueux, A.J.R., Gilles, R. (eds) High Pressure Effects on Selected Biological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70618-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70618-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15630-7

  • Online ISBN: 978-3-642-70618-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics