Pressure Effects on Phospholipids and Proteins

  • K. Heremans


In this paper we review recent experimental results and ideas about pressure effects on the behaviour of proteins and lipids. The approach will be physico-chemical. The interested reader is referred to other papers presented in this volume (see also Paton et al.,1984) for the biological background to these studies. For the physical chemist, the biological relevance is indeed not the primary motivation for high pressure studies. The results of the physical pressure studies have given us new insights into the behaviour of molecules of biological origin. We will demonstrate this with examples from the lipid and the protein field. Topics not considered here are reviewed elsewhere (Heremans, 1982; Weber and Drickamer, 1983).


High Spin Activation Volume Pressure Effect Heme Protein Sperm Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balny, C., Saldana, J.L., Dahan, N. (1984) High pressure stopped flow spectrometry at low temperatures. Anal. Biochem. 13 9, 178–190.CrossRefGoogle Scholar
  2. Bolognesi, M., Cannillo, E., Ascenzi, P., Giacometti, G.M., Merli, A. Brunori, M. (1982) Reactivity of ferric aplasia and sperm whale myoglobins towards imidazole. X-ray and binding study. J. Mol. Biol. 158, 305–315.Google Scholar
  3. Bosshard, H.R. (1981) Alkaline isomerization of ferricytochrome C J. Mol. Biol*. 153, 1125–1149.Google Scholar
  4. Bruner, L.J., Hall, J.E. (1983) Pressure effects on alamethicin conductance in bilayer membranes. Biophys. J. 44, 3 9–47.Google Scholar
  5. Careri, G., Fasella, P., Gratton, E. (1979) Enzyme dynamics: the statistical physics approach. Ann. Rev. Biophys. Bioeng., 8, 69–97.Google Scholar
  6. Carey, P.R. (1982) Biochemical applications of Raman and Resonance Raman spectroscopy. Academic Press, New York, London.Google Scholar
  7. Ceuterick, F., Peeters, J., Heremans, K., De Smedt, H., Olbrechts, H. (1978) Effect of pressure, detergents and phospholipase on the break in the Arrhenius plot of Azotobacter nitrogenase. Eur. J. Biochem. 87, 401–407.Google Scholar
  8. Chong, P.L.G., Weber, G. (1983) Pressure dependence of DPH fluorescence in single component phosphatidylcholine liposomes. Biochemistry 22, 5544–5550.CrossRefGoogle Scholar
  9. Chryssomallis, G.S., Torgerson, P.M., Drickamer, H.G., Weber, G. (1981) Effect of hydrostatic pressure on Lysozyme and Chymotrypsinogen detected by fluorescence polarization. Biochemistry 20, 3955–3959.PubMedCrossRefGoogle Scholar
  10. Cooper, A. (1976) Thermodynamic fluctuations in protein molecules. Proc. Nat. Acad. Sci. ( USA ) 73, 2740–2741.Google Scholar
  11. Eden, D., Matthew, J.B., Rosa, J.J., Richards, F.M. (1982) Increase in apparent compressibility of cytochrome c upon oxidation. Proc. Nat. Acad. Sci. 79, 815–819.Google Scholar
  12. Gavish, B., Gratton, E., Hardy, C.J. (1983) Adiabatic compressibility of globular proteins. Proc. Nat. Acad. Sci. 80, 750–754.Google Scholar
  13. Hasinoff, B.B. (1974) Kinetic activation volumes of the binding of oxygen and carbon monoxide to hemoglobin and myoglobin studied on a high pressure laser flash photolysis apparatus. Biochemistry 13, 3111–3117.PubMedCrossRefGoogle Scholar
  14. Heremans, K., Snauwaert, J., Rijkenberg, J. (1981) Stopped flow apparatus for the study of fast reactions in solution under pressure. Rev. Sci. Instrum. 51, 806–808.Google Scholar
  15. Heremans, K. (1982) High pressure effects on proteins and other biomolecules. Ann. Rev. Biophys. Bioeng. 11, 1–21.Google Scholar
  16. Heremans, K., De Smedt, H., Wuytack, F. (1982) Pressure effects on protein lipid interactions. Biophys. J. 37, 74–75.Google Scholar
  17. Jaenicke, R. (1981) Enzymes under extremes of physical conditions. Ann. Rev. Biophys. Bioeng. 10, 1–67.Google Scholar
  18. Heremans, K. (1982) High pressure effects on proteins and other biomolecules. Ann. Rev. Biophys. Bioeng. 11, 1–21.Google Scholar
  19. Karplus, M., McCammon, J.A. (1981) Pressure dependence of aromatic ring rotation in proteins: a collisional interpretation. FEBS Letters 131, 34–36.CrossRefGoogle Scholar
  20. Lakowicz, J.R., WdDe r, G. (1973) Quenching of protean fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12, 4171–4179.Google Scholar
  21. Macdonald, A.G. (1984) The effects of pressure on the molecular structure and physiological functions of cell membranes. Phil. Trans. R.Soc. Lond. B 304, 47–68.Google Scholar
  22. McGarvey, J.J., Lawthers, I, Heremans K., Toftlund, H. (1984). Spin relaxation dynamics in Iron ( II) complexes: Solvent effects on the activation and reaction volumes. J. Chem. Soc. Chem.Commun. 1575–1576.Google Scholar
  23. Moore, G.R., Huang, Z., Eley, C.G.S., Barker, H.A., Williams, G., Robinson, M.N., Willimans, R.J.P. (1982) Electron transfer in Biology: The function of Cytochrome c; Faraday Discuss Chem. Soc. 74, 311–329.Google Scholar
  24. Morishima, I., Ogawa, S. and Yamada, H. (1980) High pressure H NMR studies of hemoproteins. Pressure induced structural change in heme environments of myoglobin,hemoglobin and horseradish peroxidase. Biochemistry 19, 1569-1575.Google Scholar
  25. Morishima, I., Hara, M. (1983) High pressure NMR studies of hemoproteins. Pressure induced structural changes in the heme environments of ferric low spin metmyoglobin complexes. Biochemistry, 22, 4102-4107.Google Scholar
  26. Nagle, J.F., Wilkinson, D.A. (1978) Lecithin bilayers. Density measurements and molecular interactions. Biophys. J. 23, 159-175. 88Google Scholar
  27. Nystrom, B., Roots, J. (1984) Ouasielastic light scattering studies of the pressure induced denaturation of lysozyme. Makromol. Chem. 185, 1441-1447.Google Scholar
  28. Ogunmola, G.B., Zipp, A., Chen, F., Kauzmann, W. (1977) Effects of pressure on visible spectra of complexes of myoglobin, hemoglobin, cytochrome c and horse radish peroxidase. Proc. Nat. Acad. Sci. 74, 1-4.Google Scholar
  29. Paton, W., Elliott, D.H., Smith E.B. (1974). Diving and life at high pressures. Phil. Trans. R. Soc. Lond. B304, 1–197.Google Scholar
  30. Perutz, M.F. (1979) Regulation of oxygen affinity of hemoglobin. Ann. Rev. Biochem. 48, 327-386.Google Scholar
  31. Ringe, D., Petska, G.A., Kerr, D.E., Ortiz de Montellano, P.R. (1984) Reaction of myoglobin with phenylhydrazine: a molecular doorstop. Biochemistry, 23, 2–4.PubMedCrossRefGoogle Scholar
  32. Sano, T., Ishibashi, J., Ikeda, N., Yasunaga, T., Ogawa, S.,Morishima, I. (1981) Kinetic studies of spin interconversions in ferric mixed-spin derivatives of myoglobin. BiopolymersGoogle Scholar
  33. 20.
  34. Schejter, A., George, P. (1964) The 695 nm band of ferricytochrome and its relationship to protein conformation. Biochemistry, 3, 1045–1049.PubMedCrossRefGoogle Scholar
  35. Sorensen, L.B.(1980) The influence of pressure on the low temperature kinetics of myoglobin. PhD Thesis, University of Illinois. Thevelein, J., Van Assche, J.A., Carlier, A., Heremans,K. (1979). Heat activation of spores: Thermodynamics and effect of alcohols, furfural and high pressure. J. Bacteriology 139, 478–485.Google Scholar
  36. Tsuda, M., Govindjee, R., Ebrey, T.G. (1983). Effects of pressure and temperature on the M412 intermediate of the bacteriorhodopsin photocycle. Biophys. J. 44, 249–254.Google Scholar
  37. Wagner, G. (1980) Activation volumes for the rotational motion of interior aromatic rings in globular proteins determined by high resolution H NMR at variable pressure. FEBS Letters 112, 280–284.PubMedCrossRefGoogle Scholar
  38. Wagner, G. (1983) Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Quart. Rev. Biophys. 16, 1–57.Google Scholar
  39. Weber, G., Drickamer, H.G. (1983) The effect of high pressure upon proteins and other biomolecules. Quart. Rev. Biophys. 16, 89-112.Google Scholar
  40. Wong, P.T.T. (1984) Raman spectroscopy of thermotropic and high pressure phases of aqueous phospholipid dispersions. Ann. Rev. Biophys. Bioeng. 13, 1–24.Google Scholar
  41. Wong, P.T.T., Murphy, W.F., Mantsch, H.H. (1982) Pressure effects on the Raman spectra of phospholipid membranes. J. Chem. Phys. 76, 5230–5237.Google Scholar
  42. Yager, P., Chang, E.L. (1983) Destabilization of a lipid non bilayer phase by high pressure. Biochem. Biophys. Acta 731, 491–494.Google Scholar
  43. Yager, P., Peticolas, W.L. (1982) The kinetics of the main phase transition of aqueous dispersions of phospholipids induced by pressure jump and monitored by Raman Spectroscopy.Biochim. Biophys. Acta 688, 775–785.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. Heremans

There are no affiliations available

Personalised recommendations