Skip to main content

Molecular and Cellular Adaptations of Fish Hemoglobin-Oxygen Affinity to Environmental Changes

  • Conference paper
Respiratory Pigments in Animals

Abstract

Comparative biochemists and physiologists have found that the blood-oxygen affinities of various fish species are compatible with the physical and chemical parameters of their environments. For example, fish that live in low oxygen environments have high oxygen affinities while those that live in high oxygen environments have lower oxygen affinities. Moreover, fish that live in environments where physical parameters periodically change, have the necessary molecular machinery required for adaptation. This machinery includes species specific hemoglobins and/or the regulation of various modifier ligands (e. g., organic phosphates, HCO3, CO2, CI, H+, etc.). The intraerythrocyte concentrations of these ligands influence oxygen binding and are directly or indirectly effected by environmental parameters (e. g. temperature). It is, therefore, appropriate to review some aspects of hemoglobin as it relates to these interactions. Once an overview of these linked functions has been established, we shall address some structural and functional aspects of multiple hemoglobins, then turn our attention to the molecular mechanism of adapting to environmental oxygen and temperature to illustrate these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers GK (1979) Linked functions in allosteric proteins: an exact theory for the effect of organic phosphates on oxygen affinity of hemoglobin. Biochemistry 15: 3372–3380

    Google Scholar 

  • Anderson ME, Olson JS, Gibson QH (1973) Studies on ligand binding to hemoglobins from teleosts and elasmobranches. J. Biol. Chem. 248: 331–341

    Google Scholar 

  • Arnone A (1972) X-ray diffraction study of binding of 2,3 diphosphate glycerate to human deoxyhemoglobin. Nature 237: 146–149

    PubMed  CAS  Google Scholar 

  • Barcroft J, King WOR (1909) The effect of temperature on the dissociation curve of blood. J. Physiol. Lond. 39: 374–384

    Google Scholar 

  • Barra D, Bossa F, Bonaventura J, Brunori M (1973) Hemoglobin components from trout (Salmo irideus): Determination of the carboxyl and amino terminal sequences and their functional implications. FEBS Lett. 35: 151–154

    Google Scholar 

  • Barr D, Petruzzelli R, Bossa F, Brunori M (1983) Primary structure of hemoglobin from trout (Salmo irideus) amino acid sequence of the ß-chain of trout Hbl. Biochim. Biophys. Acta 742: 72–77

    Google Scholar 

  • Benesch R, Benesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 26: 162–167

    Google Scholar 

  • Benesch R, Benesch RE, Yu CI (1968) Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc. Natl. Acad. Sci. 59: 526–532

    Google Scholar 

  • Benesch RE, Benesch R (1970) The reaction between diphosphoglycerate and hemoglobin. Fed. Proc. 29: 1101–1104

    Google Scholar 

  • Binotti S, Giovenco B, Giardina B, Antonini E, Brunori M, Wyman J (1971) Studies of the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch. Biochem. Biophys. 142: 274–281

    Google Scholar 

  • Black EC (1958) Hyperactivity as a letahl factor in fish. J. Fish Res. Bd Can. 15: 573–586

    Google Scholar 

  • Bonaventura J, Bonaventura C, Sullivan B (1975) Hemoglobins and hemocyanins: Comparative aspects of structure and function. J. Exp. Zool. 194: 155–174

    Google Scholar 

  • Bonaventura J, Gillen R, Riggs A (1974) The hemoglobin of the Crossopterygerian fish Latimeria chalumnae (Smith) — Subunit structure and oxygen equilibrium. Arch. Biochem. Biophys. 163: 728–734

    Google Scholar 

  • Bossa F, Barra D, Coletta M, Martini F, Liverzani A, Petruzzelli R, Bonaventura J (1976) Primary structure of haemoglobins from trout (Salmo irideus). Partial determination of amino acid sequence of Hb trout IV. FEBS Lett. 64: 76–80

    Google Scholar 

  • Bossa F, Barra D, Petruzzelli R, Martini F, Brunori M (1978) Primary structure of hemoglobin from trout (Salmo irideus). Biochim. Biophys. Acta 536: 298–305

    Google Scholar 

  • Braunitzer G, Rodewald K (1980) Die Sequenz der α-and ß-Ketten des Hamoglobins des Goldfisches (Carassius auratus). Hoppe-Seyler’s Z Physiol. Chem. 361: 587–590

    Google Scholar 

  • Briehl RW (1963) A relation between 02-Hb equilibria and aggregation of subunits in lamprey hemoglobins. J. Biol. Chem. 238: 2361–2366

    CAS  Google Scholar 

  • Brunori M (1966) Bohr effect in hemoglobin from Thunnus thynnus. Arch. Biochem. Biophys. 144: 195–210

    Google Scholar 

  • Brunori M, Bonaventura J, Bonaventura C, Giardina B, Bossa F, Antonini E (1973) Hemoglobins from trout: structural and functional properties. Mol. Cell. Biochem. 1: 189–196

    Google Scholar 

  • Brunori M (1975) Molecular adaptation to physiological requirements: The hemoglobin system of trout. Curr. Topics Cell. Regul. 9: 1–39

    CAS  Google Scholar 

  • Cameron JN (1970) The influence of environmental variables on the haematology of the pinfish (Laqodon rhomboides) and striped mullet (Muqil cephalus). Comp. Biochem. Physiol. 32: 175–192

    PubMed  CAS  Google Scholar 

  • Carey FG (1973) Fishes and Warm Bodies. Sci. Amer. 228: 36–44

    PubMed  CAS  Google Scholar 

  • Carey FG, Teal JM (1966) Heat conservation in tuna muscle. Proc. Natl. Acad. Sci. USA 56: 1464–1469

    Google Scholar 

  • Carey FC, Teal JM (1969) Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213

    Google Scholar 

  • Carey FG, Teal JM, Kanwisher JW, Lawson KD (1971) Temperature regulation in Tuna. Amer. Zool. 11: 137–145

    Google Scholar 

  • Chanutin A, Curnish RR (1964) Factors influencing the electrophoretic patterns of red cell hemolysates analyzed in cacodylate buffers. Arch. Biochem. Biophys. 106: 433–439

    Google Scholar 

  • Chanutin A, Curnish RR (1967) Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 121: 96–102

    Google Scholar 

  • Chien JC, Mayo KH (1980) Carp hemoglobin. J. Biol. Chem. 225: 9790–9799

    Google Scholar 

  • Dalessio P, DiMichele L, Powers DA (1984) Extracellular control of erythrocyte oxygen affinity in teleosts. Amer. Zool. 24: 120A

    Google Scholar 

  • Denton JE, Yousef MF (1975) Seasonal changes in hematology of rainbow trout, Salmo qairdneri. Comp. Biochem. Physiol. 51A: 151–153

    Google Scholar 

  • DeWilde MA, Houston AH (1967) Haematological aspects of thermoaccclimatory process in the rainbow trout Salmo qairdneri. J, Fish Res. Bd Can. 24: 2267–2281

    Google Scholar 

  • DiMichele L, Powers DA (1982a) LDH-B genotype specific hatching times of Fundulus heteroclitus embryos. Nature 260: 563–564

    Google Scholar 

  • DiMichele L, Powers DA (1982b) The physiological basis for swimming endurance differences between LDH-B genotypes of Fundulus heteroclitus. Science 216: 1014–1016

    PubMed  CAS  Google Scholar 

  • DiMichele L, Powers DA (1984a) The relationship between oxygen consumption rate and hatching in Fundulus heteroclitus. Physiol. Zool. 57: 46–51

    Google Scholar 

  • DiMichele L, Powers DA (1984b) Developmental and oxygen consumption differences between LDH-B genotypes of Fundulus heteroclitus and their effect on hatching time. Physiol. Zool. 57: 52–56

    Google Scholar 

  • DiMichele L, Taylor MH (1980) The environmental control of hatching in Fundulus heteroclitus. J. Exp. Zool. 214: 181–187

    Google Scholar 

  • DiMichele L, Taylor MH (1981) The mechanism of hatching in Fundulus heteroclitus: Development and physiology. J. Exp. Zool. 217: 73–79

    Google Scholar 

  • Eaton JW (1974) Oxygen affinity and environmental adaptation. Ann. N.Y. Acad. Sci. 241: 491–497

    PubMed  CAS  Google Scholar 

  • Fermi G, Perutz MF (1981) Haemoglobin and myoglobin. Atlas of biological structures, vol. II, Clarendon, Oxford

    Google Scholar 

  • Fyhn U, Fyhn H, Davis J, Powers DA, Fink WT, Gar lick R (1979) Hemoglobin heterogeneity in Amazonian fishes. Comp. Biochem. Physiol. 62A: 39–66

    Google Scholar 

  • Fyhn U, Sullivan B (1974) Hemoglobin polymorphism in fishes. I. Complex phenotypic patterns in the toadfish. Biochem. Genetics 11: 373–385

    Google Scholar 

  • Fyhn U, Sullivan B (1975) Elasmobranch hemoglobins: dimerization and polymerization in various species. Comp. Biochem. Physiol. 50B: 119–129

    Google Scholar 

  • Geoghegan WD, Poluhowich JJ (1974) The major erythrocyte organic phosphates of the American eel Anquilla rostrata. Comp. Biochem. Physiol. 49B: 281–290

    Google Scholar 

  • Gerlach E, Duhm J (1972) 2,3 DPG Metabolism of red cells: Regulation and adaptative changes during hypoxia. In: Astrop P, Roth M (eds) Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. Academic Press, Munksgaard, Copenhagen, Denmark

    Google Scholar 

  • Gillen RG, Riggs A (1971) The hemoglobins of a freshwater teleost Cichlasoma cyanoquttatum: The effects of phosphorylated organic compounds upon oxygen equilibria. Comp. Biochem. Physiol. 38B: 585–595

    Google Scholar 

  • Gillen R, Riggs A (1972) Structure and function of the hemoglobins of the carp, Cyprinus carpio. J. Biol. Chem. 247: 6039–6046

    Google Scholar 

  • Greaney GS, Powers DA (1977) Cellular regulation of an allosteric modifier of fish hemoglobin. Nature 270: 73–74

    CAS  Google Scholar 

  • Greaney GS, Powers DA (1978) Allosteric modifiers of fish hemoglobins: In vitro and in vivo studies of the effect of ambient oxygen and pH on eryhtrocyte ATP concentrations. J. Exp. Zool. 203: 339–350

    Google Scholar 

  • Greaney GS, Hobish MK, Powers DA (1980a) The effects of temperature and pH on the binding of ATP to Carp (Cyprinus carpio) deoxyhemoglobin (Hbl). J. Biol. Chem. 255: 445–453

    Google Scholar 

  • Greaney GS, Place AR, Cashon RE, Smith G, Power DA (1980b) Time course of changes in enzyme activities and blood respiratory properties of killifish during long-term acclimation to hypoxia. Physiol. Zool. 53: 136–144

    Google Scholar 

  • Grujic-Injac B, Braunitzer G, Stangl A (1979) Die Aminosauresequenz der ß-ketten der beiden Hauptkomponenten des Karpfen Haemoglobin. Hoppe-Seyler’s Z Physiol. Chem. 360: 609–612

    Google Scholar 

  • Grujic-Injac B, Braunitzer G, Stangl A (1980) Die Sequenz der and ß A ß BKetten der Haemoglobine des Karpfens (Cyprinus carpio L.). Hoppe-Seyler’s Z Physiol. Chem. 361: 1629–1639

    Google Scholar 

  • Hashimoto K, Yamaguchi Y, Matsuura F (1960) Comparative studies on two hemoglobins of salmon IV. Oxygen dissociation curve. Bull. Japan Soc. Sci. Fish 26: 827

    Google Scholar 

  • Hilse K, Braunitzer G (1968) Die Aminosauresequenz der α-ketten der beiden Hauptkomponenten des Karpfen Hemoglobin. Hoppe-Seyler’s Z Physiol. Chem. 349: 433–450

    Google Scholar 

  • Hjorth JP (1975) Molecular and genetic structure of multiple hemoglobins in the Eelpout, Zoarces vioiparus. Biochem. Genetics 13: 379–391

    CAS  Google Scholar 

  • Hobish MK, Powers DA (1985) The effect of pH on the binding of DPG to human hemoglobin (Hb-Ao). J. Biol. Chem. (submitted)

    Google Scholar 

  • Houston AH, Cyr D (1974) Thermoacclimatory variation in the hemoglobin system of goldfish (Carassius auratus) and rainbow trout (Salmo qairdneri). J. Exp. Biol. 61: 455–461

    Google Scholar 

  • Houston AH, Mearow KM (1979) Temperature related changes in the ionic composition and (HCO¯) and (Na+/K+)-ATPase activities of the rainbow trout erythrocyte (submitted)

    Google Scholar 

  • Iuchi I (1973) Ontogenetic expression of larval and adult hemoglobin phenotypes in the intergeneric salmoni hybrids. Comp. Biochem. Physiol. 44B: 1087–1101

    CAS  Google Scholar 

  • Johansen K (1970) Air breathing in fishes. In: Hoar WS, Randall DJ (eds) Fish Physiology, Vol. IV, Academic Press, New York, pp. 361–411

    Google Scholar 

  • Johansen K, Lenfant C (1972) A comparative approach to the adaptability of O2-Hb affinity. In: Astrup P, Rorth M (eds) Oxygen Affinity of Hemoglobin and Red Cell AcicTBase Status. Academic Press, Munksgaard, Copenhagen, Denmark

    Google Scholar 

  • Johansen K, Weber RE (1976) On the adaptability of haemoglobin function to environmental conditions. In: Davies PS (ed) Perspectives in Experimental Biology. Pergamon Press, New York, pp. 212–234

    Google Scholar 

  • Kilmartin JV, Rossi-Bernardi L (1969) Inhibition of CO2 combination and reduction of the Bohr effect in hemoglobin chemically modified at its α-amino groups. Nature (London) 222: 1243–1246

    CAS  Google Scholar 

  • Kilmartin JV, Wooten JF (1970) Inhibition of Bohr effect after removal of C-terminal histidines from haemoglobin ß-chains. Nature 228: 766–767

    PubMed  CAS  Google Scholar 

  • Krogh A, Leitch I (1919) The respiratory function of blood in fishes. J. Physiol. Lond. 52: 288

    Google Scholar 

  • Lenfant C, Johansen K (1968) Respiration in the African lungfish, Protopterus aethiopicus. I. Respiratory properties of blood and normal patterns of breathing and gas exchange. J. Exp. Biol. 49: 437–452

    Google Scholar 

  • Lotrich VA (1975) Summer home range and movements of Fundulus heteroclitus (Pisces: Cyprinodontidae) in a tidal creek. Ecology 56: 191–198

    Google Scholar 

  • Meredith WH, Lotrich VA (1979) Production dynamics of a tidal creek population of Fundulus heteroclitus (L.). Estuarine and Coastal Mar. Sci. 8: 88–118

    Google Scholar 

  • Mied P, Powers DA (1978) Hemoglobins of the killifish Fundulus heteroclitus: Separation, characterization and a model for the subunit composition. J. Biol. Chem. 253: 3521–3528

    Google Scholar 

  • Perutz MF, Lehmann H (1968) Molecular pathology of human hemoglobin. Nature 219: 902–909

    PubMed  CAS  Google Scholar 

  • Perutz MF, Muirhead H, Mazzarella L, Crowther RA, Greer J, Kilmartin JV (1969) Indentification of residues responsible for the alkaline Bohr effect in Haemoglobin. Nature 222: 1240–1243

    PubMed  CAS  Google Scholar 

  • Perutz MF (1984) Species adaptation in a protein molecule. Molecular Biology Evolution, Vol. I, n° 1, pp. 1–28

    Google Scholar 

  • Place AR, Powers D (1978) Genetic basis for protein polymorphism in Fundulus heteroclitus. Biochem. Genetics 16: 577–591

    Google Scholar 

  • Place AR, Powers DA (1979) Genetic variation and relative catalytic efficiencies: The LDH-B allozymes of Fundulus heteroclitus. Proc. Natl. Acad. Sci. USA 76: 2354–2358

    Google Scholar 

  • Place AR, Powers DA (1984a) The lactate dehydrogenase (LDH-B) allozymes of Fundulus heteroclitus ( Lin. ): I. Purification and Characterization. J. Biol. Chem. 259: 1299–1308

    Google Scholar 

  • Place AR, Powers DA (1984b) The lactate dehydrogenase (LDH-B) allozymes of Fundulus heteroclitus ( Lin. ): II. Kinetic analyses. J. Biol. Chem. 259: 1309–1318

    Google Scholar 

  • Powers DA (1972) Hemoglobin adaptation for fast and slow water habitats in sympatric catostomid fishes. Science 177: 360–362

    PubMed  CAS  Google Scholar 

  • Powers DA (1974) Structure-function and molecular ecology of fish hemoglobins. Ann. N.Y. Acad. Sci. 241: 472–490

    PubMed  CAS  Google Scholar 

  • Powers DA, Powers DW (1975) Predicting gene frequencies in a natural population: A testable hypothesis. In: Markert C (ed) The Isozymes, IV Genetics and Evolution, Vol. IV, Academic Press, New York, pp. 63–84

    Google Scholar 

  • Powers DA (1980) The Tmolecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Amer. Zool. 20: 139–162

    CAS  Google Scholar 

  • Powers DA (1983) Adaptation of erythrocyte function during Ghanges in environmental oxygen and temperature. In: Cossins AR, Sheterline P (eds) Cellular Acclimatisation to Environmental Change. Cambridge University Press, pp. 227–244

    Google Scholar 

  • Powers DA, Edmundson AB (1972a) Multiple hemoglobins of catostomid fish. I. Isolation and characterization of the isohaemoglobin from Catostomus clarkii. J. Biol. Chem. 247: 6686–6693

    Google Scholar 

  • Powers DA, Edmundson AB (1972b) Multiple hemoglobins of catostomid fish. II. The amino acid sequence of the major alpha chain from Catostomus clarkii hemoglobins. J. Biol. Chem. 247: 6694–670

    Google Scholar 

  • Powers DA, Place AR (1978) Biochemical genetics of Fundulus heteroclitus. I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B and Pgm-A. Biochem. Genetics 16: 593–607

    Google Scholar 

  • Powers DA, Fyhn HJ, Fyhn UFH, Martin JP, Garlick RL, Wood SC (1979a) A comparative study of the oxygen equilibria of blood from 40 genera of Amazonian fishes. Comp. Biochem. Physiol. 62A: 67–85

    Google Scholar 

  • Powers DA, Martin JP, Garlick RL, Fyhn HJ (1979b) The effect of temperature on the oxygen equilibria of fish hemoglobins in relation to environmental thermal variability. Comp. Biochem. Physiol. 62A: 87–94

    Google Scholar 

  • Powers DA, Greaney GS, Place AR (1979c) Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in kiilifish. Nature 277: 240–241

    PubMed  CAS  Google Scholar 

  • Powers DA, Hobish MK, Greaney GS (1981) Rapid-rate equilibrium analysis of the interactions between organic phosphate and hemoglobins. In: Methods in Enzymology. Academic Press, Vol. 76, pp. 559–57

    Google Scholar 

  • Powers DA, DiMichele L, Place AR (1983) The use of enzyme kinetics to predict differences in cellular metabolism, developmental rate, and swimming performance between LDH-B genotypes of the fish Fundulus heteroclitus. In: Rattazzi MC, Scandalios JG, Whitt GS (eds) The Isozymes, Vol. X, Alan R Liss Inc. New York, pp. 147–170

    Google Scholar 

  • Powers DA, Delassio P, DiMichele L (1985) The molecular ecology of Fundulus heteroclitus Hemoglobin-Oxygen affinity. Amer. Zool. (in press)

    Google Scholar 

  • Prosser CL (1973) Comparative Animal Physiology, third edition. Saunders WB Co., Philadelphia PA

    Google Scholar 

  • Reischl E (1976) The hemoglobins of the fresh water teleost Hoplias malabaria heterogeneity and polymorphism. Comp. Biochem. Physiol. 55B: 255–257

    CAS  Google Scholar 

  • Riggs A (1970) Properties of fish hemoglobins. In: Hoar WS, Randall DJ (eds) Fish Physiology, Vol. IV. Academic Press, New York, pp. 209–252

    Google Scholar 

  • Riggs A (1971) Mechanism of the enhancement of the Bohr effect in mammalian hemoglobins by diphosphoglycerate. Proc. Natl. Acad. Sci. 68: 2062–2065

    PubMed  CAS  Google Scholar 

  • Root RW (1931) The-respiratory function of the blood of marine fishes. Biol. Bull. Mar. Biol. Lab. Woods Hole 61: 427–456

    CAS  Google Scholar 

  • Rossi-Fanelli A, Antonini E (1961) Oxygen equilibrium of hemoglobin from Thunnus thynnus. Nature (London) 188: 895–896

    Google Scholar 

  • Taylor MH, DiMichele L, Leach GJ (1977) Egg stranding in the life cycle of the mummichog, Fundulus heteroclitus. Copeia 1977: 397–399

    Google Scholar 

  • Tsuyuki H, Roberts E, Vanstone WE (1965) Multiple hemoglobins of some members of the Salmonidae family. J. Fish Res. Board Can. 22: 203–213

    Google Scholar 

  • Watt KWK, Riggs A (1975) Hemoglobins of the tadplole of the bullfrog Rana catesbliana. J. Biol. Chem. 250: 5934–5944

    Google Scholar 

  • Weber RE (1975) Respiratory properties of hemoglobin from eunicid polychaetes. J. Comp. Physiol. 99: 297–307

    CAS  Google Scholar 

  • Weber RE, Sullivan B, Bonaventura J, Bonaventura C (1976) The hemoglobin system of the primative fish Amia calva: Isolation and functional charaterization of the individual components. Biochim. Biophys. Acta 434: 18–31

    Google Scholar 

  • Wittenberg JB, Wittenberg BA (1974) The choroid rete merabile of the fish eye. I. Oxygen secretion and structure: comparison with the swim bladder, rete mirabile. Biol. Bull. 146: 116–136

    Google Scholar 

  • Wood SC, Johansen K (1972) Adapatation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature 237: 278–279

    CAS  Google Scholar 

  • Wood SC, Johansen K, Weber RE (1975) Effects of ambient pO2 on O2-Hb affinity and red cell ATP concentration in a benthic fish, Pleuronectes platessa. Resp. Physiol. 25: 259–267

    Google Scholar 

  • Wyman J (1948) Heme proteins. Adv. Protein Chem. 19: 407–531

    Google Scholar 

  • Wyman J (1964) Linked functions and reciprocal effects in hemoglobin: a second look. In: Anfinsen CB, Anson ML, Edsal JT, Richards FM (eds) Advances in Protein Chemistry, Vol. 19, Academic Press, New York, pp. 223–286

    Google Scholar 

  • Wyman J, Gill SJ, Noll L, Giardina B, Colosima A, Brunori M (1977) The balance sheet of a hemoglobin: thermodynamics of CO binding by hemoglobin trout I. J. Moi. Biol. 109: 195–205

    Google Scholar 

  • Yamaguchi K, Kochiyama Y, Matsurra F (1962) Studies on multiple hemoglobins of eel. II. Oxygen dissociation curve and relative amounts of components. F and S Bull. Japan Soc. Sci. Fish. 28: 192–198

    Google Scholar 

  • Yamaguchi K, Kochiyama Y, Hashimoto K, Matsurra F (1963) Studies on two hemoglobins of loach. II. Oxygen dissociation curve. Bull. Japan Soc. Sci. Fish. 29: 180–188

    Google Scholar 

  • Yamanaka H, Yamaguchi K, Matsurra F (1965) Starch gel electrophoresis of fish hemoglobins. I. Usefulness of cyanmethemoglobin for the electrophoresis. Bull. Japan Soc. Sci. Fish. 31: 827–83

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Powers, D.A. (1985). Molecular and Cellular Adaptations of Fish Hemoglobin-Oxygen Affinity to Environmental Changes. In: Lamy, J., Truchot, JP., Gilles, R. (eds) Respiratory Pigments in Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70616-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70616-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15629-1

  • Online ISBN: 978-3-642-70616-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics