Skip to main content

Primary Structure of Arthropod Hemocyanins

  • Conference paper
Respiratory Pigments in Animals

Abstract

The relatively low solubility of oxygen in water has led, in the animal kingdom, to the development of oxygen carriers which increase the O2capacity of the blood between one and two orders of magnitude and thus provide the basis for continuous high activity. There are three types of such carriers which bind oxygen by different principles: (i) The hemoglobins, in which one Fe(II) is bound by a protoporphyrin plus one histidine residue of the globin. This has proved to be the most successful invention which occurs throughout the animal kingdom, (ii) The hemerythrins where two Fe(II) atoms bind one O2, being themselves complexes by members of the polypeptide chain; the hemerythrins are restricted to a small number of invertebrate animals, (iii) The hemocyanins, in which the active site is a pair of Cu(I) atoms which are also bind directly to the polypeptide chain; there is no heme. While hemoglobins are either intra- or extracellular, hemerythrins are exclusively intracellular and hemocyanins exclusively extracellular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Braunitzer G, Gehring-Müller R, Hilschmann N, Hilse K, Hobom G, Rudioff V, Wittmann-Liebold B (1981) Die Konstitution des normalen adulten Humanhämoglobins. Hoppe-Seyler’s Z. Physiol. Chem. 325: 283–286

    Google Scholar 

  • Busselen P (1970) The electrophoretic heterogeneity of Carcinus maenas hemocyanin. Arch. Biochem. Biophys. 137: 415–420

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Brauer D, Wittmann-Liebold B (1978) Miroc sequence analysis of peptides and proteins using 4-NN-dimethylaminoazobenzene 4’-isothiocyanate/phenylisothiocyanate double coupling method. FEBS Lett. 93: 205–214

    Article  CAS  Google Scholar 

  • Ellerton HD, Ellerton NF, Robinson HA (1983) Hemocyanin — a current perspective. Progr. Biophys. Molec. Biol. 41: 143–248

    Google Scholar 

  • Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bäk HJ, Beintema JJ (1984) 3.2 Ã… Structure of the copper-containing, oxygen-carrying protein, Panulirus interruptus hemocyanin. Nature (London) 309: 23–29

    Google Scholar 

  • Henschen A, Lottspeich F, Kehl M, Southan C, Lucas J (1982) Structure-function-evolution relationship in fibrinogen. In: Henschen A, Graeff H, Lottspeich F (eds) Fibrinogen-Recent Biochemical and Medical Aspects. Walter de Gruyter, Berlin, New York, pp. 67–82

    Google Scholar 

  • Himmelwright RS, Eickman NC, Lubien CD, Solomon EI (1980) Chemical and spectroscopic comparison of the binuclear copper active site of mollusc and arthropod hemocyanins. J. Amer. Chem. Soc. 102: 5378–5388

    Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78: 3824–3828

    Google Scholar 

  • Jollès J, Jollès P, Lamy J, Lamy J (1979) Structural characterization of seven different subunits in Androctonus australis hemocyanin. FEBS Lett. 106: 289–291

    Article  PubMed  Google Scholar 

  • Kempter B, Markl J, Gebauer W, Brenowitz M, Bonaventura C, Bonaventura J (1985) Immunological correspondence between arthropod hemocyanin subunits. II. Xiphosuran (Limulus) and spider (Eurypelma, Cupiennius) hemocyanin. Hoppe-Seyler’s Z. Physiol. Chem. (submitted)

    Google Scholar 

  • Klarman A, Daniel E (1981) Structural basis of subunit heterogeneity in arthropod hemocyanins. Comp. Biochem. Physiol. 70B: 115–123

    Google Scholar 

  • Klippenstein GL, Holleman JW, Klotz IM (1968) The primary structure of Golfinqia qouldii hemerythrin. Order of peptides in fragments produced by tryptic digestion of succinylated hemerythrin. Complete amino acid sequence. Biochemistry 7: 3868–3878

    Google Scholar 

  • Lamy J, Richard M, Goyffon M (1970) Sur les modifications des électrophorégrammes en gel de Polyacrylamide des protéines de l’hémolymphe des Scorpions Androctonus australis (L.) et Androctonus mauretanicus (Pocock), provoqués par la congélation. C.R. Acad. Sci. Paris, série D, 270: 1627–1630

    Google Scholar 

  • Lamy J, Lamy J, Weill J, Bonaventura J, Bonaventura C, Brenowitz M (1979) Immunological correlates between the multiple hemocyanin subunits of Limulus polyphemus and Tachypleus tridentatus. Arch. Biochem. Biophys. 196: 324–339

    Google Scholar 

  • Lamy J, Bijlhoit MMC, Sizaret P-Y, Lamy J, van Brüggen EFJ (1981) Quaternary structure of scorpion (Androctonus australis) hemocyanin. Localization of subunits with immunological methods and electron microscopy. Biochemistry 20: 1849–1856

    Google Scholar 

  • Lamy J, Sizaret P-Y, Lamy J, Feldmann R, Bonaventura J, Bonaventura C (1982) Preliminary report on the quaternary structure of Limulus polyphemus hemocyanin. Life Chemistry Reports, suppl. 1: 47–50

    Google Scholar 

  • Lamy J, Compin S, Lamy J (1983) Immunological correlates between multiple isolated subunits of Androctonus australis and Limulus polyphemus hemocyanins: an evolutionary approach. Arch. Biochem. Biophys. 223: 584–603

    Google Scholar 

  • Linzen B (1983) Subunit heterogeneity in arthropodan hemocyanins. Life Chemistry Reports suppl. 1: 26–38

    Google Scholar 

  • Loewe R (1978) Hemocyanins in spiders. V. Fluorimetric recording of oxygen binding curves, and its application to the analysis of allosteric interactions in Eurypelma californicum hemocyanin. J. Comp. Physiol. 128: 161–168

    CAS  Google Scholar 

  • Markl J, Strych W, Schartau W, Schneider H-J, Schöberl P, Linzen B (1979) Hemocyanins in spiders. VI. Comparison of the polypeptide chains of Eurypelma californicum hemocyanin. Hoppe-Seyler’s Z. Physiol. Chem. 360: 639–650

    Google Scholar 

  • Markl J, Kempter B, Linzen B, Bijlhoit MMC, van Brüggen EFJ (1981) Hemocyanins in spiders. XVI. Subunit topography and a model of the quaternary structure of Eurypelma hemocyanin. Hoppe-Seyler’s Z. Physiol. Chem. 362: 1631–1641

    Google Scholar 

  • Markl J, Decker H, Linzen B, Schutter WG, van Brüggen EFJ (1982) Hemocyanins in spiders. XV. The role of the individual subunits in the assembly of Eurypelma hemocyanin. Hoppe-Seyler’s Z. Physiol. Chem. 363: 73–87

    Google Scholar 

  • Markl J, Gebauer W, Runzler R, Avissar I (1984) Immunological correspondence between arthropod hemocyanin subunits. I. Scorpion (Leiurus, Androctonus) and spider (Eurypelma, Cupiennius) hemocyanin. Hoppe-Seyler’s Z. Physiol. Chem. 365: 619–631

    Google Scholar 

  • Metzger W (1984) Zur Primärstruktur der Untereinheit a des Hämocyanins aus der Vogelspinne Eurypelma californicum. Diploma Thesis, University of Munich

    Google Scholar 

  • Nemoto T, Takagi T (1983) Sequence of Tachypleus tridentatus hemocyanin. Reported at the 56th Ann Meeting Jap Biochem Soc, Sept. 29–Oct. 2.

    Google Scholar 

  • Nozaki Y, Tanford C (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem. 246: 2211–2217

    Google Scholar 

  • Schartau W, Eyerie F, Reisinger P, Geisert H, Storz H, Linzen B (1983) Hemocyanins in spiders. XIX. Complete amino acid sequence of subunit d from Eurypelma californicum hemocyanin and comparison to chain e. Hoppe-Seyler’s Z. Physiol. Chem. 364: 1383–1409

    Google Scholar 

  • Schneider H-J, Markl J, Schartau W, Linzen B (1977) Hemocyanins in spiders. IV. Subunit heterogeneity of Eurypelma (Duqesiella) hemocyanin, and separation of polypeptide chains. Hoppe-Seyler’s Z. Physiol. Chem. 358: 1133–1141

    Google Scholar 

  • Schneider H-J, Illig U, Müller E, Linzen B, Lottspeich F, Henschen A (1982) Hemocyanins in spiders. XVII. A presumptive active-site sequence of arthropodan hemocyanins. Hoppe-Seyler’s Z. Physiol. Chem. 363: 487–492

    Google Scholar 

  • Schneider H-J, Drexel R, Feldmaier G, Linzen B, Lottspeich F, Henschen A (1983) Hemocyanin in spiders. XVIII. Complete amino-acid sequence of subunit e from Eurypelnna californicum hemocyanins. Hoppe-Seyler’s Z. Physiol. Chem. 364: 1357–1381

    Google Scholar 

  • Sizaret P-Y, Frank J, Lamy J, Weill J, Lamy J (1982) A refined quaternary structure of Androctonus australis hemocyanin. Eur. J. Biochem. 127: 501–506

    Google Scholar 

  • Sullivan B, Bonaventura J, Bonaventura C, Godette G (1976) Hemocyanin of the horseshoe crab, Limulus polyphemus. Structural differentiation of the isolated components. J. Biol. Chem. 251: 7644–7648

    Google Scholar 

  • Takagi T, Nemoto T (1980) Tachypleus tridentatus hemocyanin. Separation and characterization of monomer subunits and studies of sulfhydryl groups. J. Biochem. ( Tokyo ) 87: 1785–1793

    Google Scholar 

  • van Holde KE, Miller KI (1982) Hemocyanins. Quart. Rev. Biophys. 15: 1–129

    Google Scholar 

  • Vereijken JM, Schwander EH, Soeter NM, Beintema JJ (1982) Limited proteolysis of the 94000-dalton subunit of Panulirus interruptus hemocyanin; the carbohydrate attachment site. Eur. J. Biochem. 123: 283–289

    Google Scholar 

  • Yokota E, Riggs AF (1984) The structure of the hemocyanin from the horseshoe crab, Limulus polyphemus. The amino acid sequence of the largest cyanogen bromide fragment. J. Biol. Chem. 259: 4739–4749

    Google Scholar 

  • Zwilling R, Dörsam H, Torff H-J, Rôdl J (1981) Low molecular mass protease: evidence for a new family of proteolytic enzymes. FEBS Lett. 127: 75–78

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Linzen, B., Schartau, W., Schneider, HJ. (1985). Primary Structure of Arthropod Hemocyanins. In: Lamy, J., Truchot, JP., Gilles, R. (eds) Respiratory Pigments in Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70616-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70616-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15629-1

  • Online ISBN: 978-3-642-70616-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics