Skip to main content

Functions and Functioning of Crustacean Hemocyanin

  • Conference paper
Respiratory Pigments in Animals

Abstract

Although the oxygen binding properties of hemocyanin have been known for over 100 years the structure or functioning of this oxygen carrier molecule was poorly known at the time of Wolverkamp and Waterman’s (1960) chapter on respiration in Waterman’s “Physiology of Crustacea” and today, 25 years later, although our data base is much expanded our knowledge is still rudimentary compared with that for say mammalian Hb. In functional terms we have abundant evidence that the crustacean hemocyanins (Hcy) are, in fact efficient oxygen carrier molecules, usually of moderate oxygen affinity, higher than usual cooperativity but lower than usual oxygen carrier capacity. Other important roles in carbon dioxide transport, in regulation of hemolymph acid-base balance, and as hemolymph osmoeffector molecules, are now also known but have been very much less well studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldridge JB, Cameron JN (1979) CO2 exchange in the blue crab, Cailinectes sapidus (Rathbun). J. Exp. Zool. 207: 321–328

    Google Scholar 

  • Angersbach D, Decker H (1978) Oxygen transport in crayfish blood: effect of thermal acclimation, and short term fluctuations related to ventilation and cardiac performance. J. Comp. Physiol. 123: 105–112

    Google Scholar 

  • Booth CE (1982) Respiratory responses to activity in the blue crab, Cailinectes sapidus. Ph.D. Thesis. University of Calgary, Calgary, Alberta, Canada

    Google Scholar 

  • Booth CE, McMahon BR, Pinder AW (1982) Oxygen uptake and the potentiating effects of increased hemolymph lactate on oxygen transport during exercice in the blue crab, Cailinectes sapidus. J. Comp. Physiol. 148: 111–121

    Google Scholar 

  • Burggren WW, McMahon BR (1983) An analysis of scaphognathite pumping performance in the crayfish Orconectes virilis: compensatory changes to acute and chronic hypoxic exposure. Physiol. Zool. 56: 309–318

    Google Scholar 

  • Burnett LE (1982) CO2 excretion across isolated perfused crab gills: facilitation by carbonic anhydrase. Amer. Zool. 24: 253–264

    Google Scholar 

  • Burnett LE, Bridges CR (1981) The physiological properties and function of ventilatory pauses in the crab Cancer pagurus. J. Comp. Physiol. 145: 81–88

    Google Scholar 

  • Busselen P. (1970) The electrophoretic heterogeneity of Carcinus maenas hemocyanin. Arch. Biochem. Biophys. 137: 415–420

    Article  PubMed  CAS  Google Scholar 

  • Butler PJ, Taylor EW, McMahon BR (1978) Respiratory and circulatory changes in the lobster (Homarus vulgaris) during long term exposure to moderate hypoxia. J. Exp. Biol. 73: 131–146

    Google Scholar 

  • Childress JJ (1971) Respiratory adaptations to the oxygen minimum layer in the bathy-pelagic mysid Gnathophausia ingens. Biol. Bull. 141: 109–121

    Article  Google Scholar 

  • Freel RW (1978) Oxygen affinity of the heomlymph of the mesopelagic mysidacean Gnathophausia ingens. J. Exp. Zool. 204: 267–274

    Article  CAS  Google Scholar 

  • deFur PL (1980) Respiratory consequences of air exposure in Cancer productus, an intertidal crab. Ph.D Thesis. University of Calgary, Calgary, Alberta, Canada

    Google Scholar 

  • Gilles R. (1977) Effects of osmotic stresses on the protein concentration and pattern of Eriocheir sinensis blood. Comp. Biochem. Physiol. 56A: 109–114

    Article  CAS  Google Scholar 

  • Johansen K, Lenfant C, Mecklenburg TA (1970) Respiration in the crab, Cancer maqister. Z. Vergl. Physiol. 70: 1–1

    Google Scholar 

  • Jorgensen D, Bourne G, Burnett L, deFur P, McMahon B (1982) Circulatory function during hypoxia in the dungeness crab, Cancer magister. Amer. Zool. 22: 958A

    Google Scholar 

  • Kerr MS (1969) The hemolymph proteins of the blue crab, Cailinectes sapidus. II. A lipoprotein serologically identical to oocyte lipovitellin. Dev. Biol. 20: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Mangum CP (1980) Respiratory function of the hemocyanins. Amer. Zool. 20: 19–38

    CAS  Google Scholar 

  • Mangum CP (1983a) Adaptability and inadaptability among HCO2 transport systems: an apparent paradox. Life Chem. Reports 4: 335–352

    Google Scholar 

  • Mangum CP (1983b) Oxygen transport in the blood. In: Bliss DE and Mantel LH (eds) The Biology of Crustacea. Vol. 5. Academic Press, pp. 373–429

    Google Scholar 

  • Mangum CP (1983c) On the distribution of lactate sensitivity among the hemocyanins. Mar. Biol. Letters 4: 139–14

    CAS  Google Scholar 

  • Mangum CP, Towle DW (1977) Physiological adaptation to unstable environments. Am. Sci. 65: 67–75

    Google Scholar 

  • Mangum CP, McMahon BR, deFur PL, Wheatly MG (1984) Gas exchange, acid-base balance, and the oxygen supply to the tissues during a molt of the blue crab Callinectes sapidus. J. Crust. Biol. (In press)

    Google Scholar 

  • Mauro NA, Mangum CP (1982) The role of the blood in the temperature dependence of oxidative metabolism in decapod crustaceans. I. Intraspecific responses to seasonal differences in temperature. J. Exp. Zool. 219: 189–198

    Google Scholar 

  • McDonald DG (1977) Respiratory physiology of the crab Cancer magister. Ph.D Thesis, University of Calgary, Calgary, Alberta, Canada

    Google Scholar 

  • McDonald DG, McMahon BR, Wood CM (1977) Patterns of heart and scaphognathite activity in the crab Cancer mag ister. J. Exp. Zool. 202: 33–44

    Google Scholar 

  • McMahon BR (1981) Oxygen uptake and acid-base balance during activity in decapod crustaceans. In: Herreid CF and Fourtner CR (eds) Locomotion and Energetics in Arthropods. Plenum Publishing Corp. pp. 299–355

    Google Scholar 

  • McMahon BR, Burggren WW (1979) Respiration and adaptation to the terrestrial habitat in the land hermit crab Coenobita clypeatus. J. Exp. Biol. 79: 265–281

    Google Scholar 

  • McMahon BR, Burggren WW (1980) Oxygen uptake and transport in three air breathing crabs. The Physiologist 23 (4): 928A McMahon BR, Wilkes PRH (1983) Emergence responses and aerial ventilation in normoxic and hypoxic crayfish Orconectes rusticus. Physiol. Zool. 56: 133–144

    Google Scholar 

  • McMahon BR, Wilkens JL (1983) Ventilation, perfusion and oxygen uptake. In: Mantel L and Bliss DE (eds) The Biology of Crustacea, Vol. 5: Internal Anatomy and Physiological Regulation. Academic Press, pp. 289–372

    Google Scholar 

  • McMahon BR, Sinclair F, Hassall CD, deFur PL, Wilkes PRH (1978) Ventilation and control of acid-base status during temperature acclimation in the crab Cancer magister. J. Comp. Physiol. 128: 109–116

    Google Scholar 

  • McMahon BR, McDonald DG, Wood CM (1979) Ventilation oxygen uptake and haemolymph oxygen transport following enforced exhaustive activity in the Dungeness crab, Cancer magister. J. Comp. Physiol. 128B: 109–116

    Google Scholar 

  • Morris S, Taylor AC, Bridges CR, Grieshaber M (1984) Respiratory properties of the haemolymph of the intertidal prawn Palaemon eleqans Rathke. J. Exp. Zool. (In press)

    Google Scholar 

  • Piiper J, Scheid P (1972) Maximum gas transfer efficacy of models for fish gills, avian lungs and mammalian lungs. Resp. Physiol. 14: 115–124

    Google Scholar 

  • Randall DJ, Wood CM (1981) Carbon dioxide excretion in the land crab Cardisoma carnifex. J. Exp. Zool. 218: 37–44

    Google Scholar 

  • Rutledge PS (1981) Circulation and oxygen transport during activity in the crayfish, Pacifastacus leniusculus. Am. J. Physiol. 240: R-9–R0105

    Google Scholar 

  • Snyder GK, Mangum CP (1982) The relationship between the capacity for oxygen transport, size, shape and aggregation state of an extracellular oxygen carrier. In: Joseph and Celia Bonaventura, and Shirley Tesh (eds) Physiology and Biochemistry of Horseshoe Crabs. A.R. Liss, New York.

    Google Scholar 

  • Spoek GL (1974) The relationship between blood haemocyanin level, oxygen uptake and the heart-beat and scaphognathite-beat frequencies in the lobster Homarus qammarus. Neth. J. Sea Res. 8: 1–26

    Article  CAS  Google Scholar 

  • Truchot JP (1975) Factors controlling the in vitro and in vivo oxygen affinity of the hemocyanin in the crab Carcinus maenas (L.) Respir. Physiol. 24: 173–189

    CAS  Google Scholar 

  • Truchot JP (1976) Carbon dioxide combining properties of the blood of the shore crab Carcinus maenas (L.): CO2 dissociation curves and Haldane effect. Comp. Physiol. 112: 283–293

    Article  CAS  Google Scholar 

  • Truchot JP (1980) Lactate increases the oxygen affinity of crab hemocyanin. J. Exp. Zool. 214: 205–208

    Article  CAS  Google Scholar 

  • Truchot JP (1981) L’équilibre acido-basique extracellulaire et sa régulation dans les divers groupes animaux. J. Physiol. (Paris) 77: 529–580

    CAS  Google Scholar 

  • Truchot JP (1983) Regulation of Acid-Base Balance. In: Mantel LH and Bliss DE (eds) The Biology of Crustacea, Vol. 5: Internal Anatomy and Physiological Regulation. Academic Press, pp. 431–456

    Google Scholar 

  • Weber RE, Hagerman L (1981) Oxygen and carbon dioxide transporting qualities of hemocyanin in the hemolymph of a natant decapod Palaemon adspersus. J. Comp. Phsyiol. 145: 21–27

    Google Scholar 

  • Wheatly MG, McMahon BR (1982) Responses to hypersaline exposure in the euryhaline crayfish Pacifastacus leniusculus. II. Modulation of haemocyanin oxygen binding in vitro and in vivo. J. Exp. Biol. 99: 447–467

    Google Scholar 

  • Wheatly MG, Taylor EW (1981) The effect of progressive hypoxia on heart rate, ventilation, respiratory gas exchange and acid-base status in the crayfish Austropotamobius pallipes. J. Exp. Biol. 92: 125–141

    Google Scholar 

  • Wheatly MG, McMahon BR, Burggren WW, Pinder A (1985) Hemolymph acid-base and blood gas status during sustained voluntary activity in the land hermit crab Coenobita compressus. H. Milne Edwards. Submitted to Journal of Experimental Biology, 1984

    Google Scholar 

  • Wilkes PRH, McMahon BR (1982a) Effect of maintained hypoxic exposure on the crayfish Orconectes rusticus. II Ventilatory, acid-base and cardiovascular adjustments. J. Exp. Biol. 98: 119–137

    Google Scholar 

  • Wilkes PRH, McMahon BR (1982b) Effect of maintained hypoxic exposure on the crayfish Orconectes rusticus. II. Modulation of haemocyanin oxygen affinity. J. Exp. Biol. 98: 139–149

    Google Scholar 

  • Wolverkamp HP, Waterman TH (1960) Respiration. In: Waterman TH (ed) The Physiology of crustacea. Vol. 1. Academic Press, pp. 35–10

    Google Scholar 

  • Wood CM, McMahon BR, McDonald DG (1979) Respiratory gas exchange in the resting starry flounder Platichthys stellatus: Comparison with other teleosts. J. Exp. Biol. 78: 167–179

    Google Scholar 

  • Wood CM, Randall DJ (1981) Haemolymph gas transport, acid-base regulation, and anaerobic metabolism during exercise in the land crab Cardisoma carnifex. J. Exp. Zool. 218: 23–35

    Google Scholar 

  • Zatta P (1981) Protein-lipid interactions in Carcinus maenas hemocyanin. Comp. Biochem. Physiol. 69B: 731–73

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McMahon, B. (1985). Functions and Functioning of Crustacean Hemocyanin. In: Lamy, J., Truchot, JP., Gilles, R. (eds) Respiratory Pigments in Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70616-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70616-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15629-1

  • Online ISBN: 978-3-642-70616-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics