Skip to main content

Evolution and Adaptation of Avian and Crocodilian Hemoglobins

  • Conference paper
Respiratory Pigments in Animals

Abstract

Among the reptiles, the species belonging to the crocodilia order are the closest relatives of birds (Romer, 1966). Indeed the thecodontia order probably arose directly from the primitive cotylosaurs during the Triassic period some 220 millions years ago. These thecodonts gave rise to crocodiles during the Jurassic period and birds during the Triassic about 150 millions years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnone A (1972) X-ray diffraction study of binding 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 237: 146–149

    Article  PubMed  CAS  Google Scholar 

  • Arnone A, Perutz M (1974) Structure of inositol hexaphosphate — human deoxyhaemoglobin complex. Nature 249: 34–36

    Article  PubMed  CAS  Google Scholar 

  • Bauer C, Forster M, Gros C, Mosca A, Perella M, Rollema HS, Vogel D (1981) Analysis of bicarbonate binding to crocodilian hemoglobin. J. Biol. Chem. 256: 8429–8435

    Google Scholar 

  • Bauer C, Jelkmann W (1977) Carbon dioxide governs the oxygen affinity of crocodile blood. Nature 269: 825–827

    Article  PubMed  CAS  Google Scholar 

  • Baumann R, Goldbach E, Haller EA, Wright PG (1984) Organic phosphates increase the solubility of avian haemoglobin D and embryonic chicken haemoglobin. Biochem. J. 217: 767–771

    Google Scholar 

  • Benesch R, Benesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 26: 162–167

    Google Scholar 

  • Braunitzer G, Godovac J (1982) The amino acid sequence of pheasant (Phasianus colchicus colchicus) hemoglobins. Hoppe-Seyler’s Z. Physiol. Chem. 363: 229–238

    Google Scholar 

  • Brown JL, Ingram VM (1974) Structural studies on chick embryonic hemoglobins. J. Biol. Chem. 249: 3960–3972

    Google Scholar 

  • Brygier J, Paul C (1976) Oxygen equilibrium of chicken hemoglobin in the presence of organic phosphates. Biochimie 58: 755–756

    Article  PubMed  CAS  Google Scholar 

  • Chanutin A, Curnish RR (1967) Effect of the organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 121: 96–102

    Google Scholar 

  • Dill DB, Edwards HT (1931) Oxygen affinity of crocodilian blood. J. Biol. Chem. 90: 5115–5130

    Google Scholar 

  • Engel JD, Rusling DJ, McCurne KC, Dodgson JB (1983) Unusual structure of the chicken embryonic a globin gene π’. Proc. Natl. Acad. Sci. USA 80: 1392–1396

    Google Scholar 

  • Fermi G (1975) Three-dimensional Fourier synthesis of human deoxyhaemoglobin at 2.5 Å resolution: refinement of the atomic model. J. Mol. Biol. 97: 237–256

    Article  PubMed  CAS  Google Scholar 

  • Fermi G, Perutz MF (1981) Haemoglobin and Myoglobin. Atlas of Biological Structures. Vol. 2, Clarendon, Oxford.

    Google Scholar 

  • Godovac-Zimmermann J, Braunitzer G (1983) The amino acid sequence of northern mallard (Anas platyrhynchos platyrhynchos) hemoglobin. Hoppe-Seyler’s Z. Physiol. Chem. 364: 665–674

    Google Scholar 

  • Godovac-Zimmermann J, Braunitzer G (1984) The amino acid sequence of αA and ß chains from the major hemoglobin component of american flamingo (Phoenicopterus ruber ruber). Hoppe-Seler’s Z. Physiol. Chem. 365: 437–443

    Google Scholar 

  • Jelkmann W, Bauer C (1980) Oxygen binding properties of caiman blood in the absence and presence of carbon dioxide. Comp. Biochem. Physiol. 65A: 331–33

    Google Scholar 

  • Kimura M (1979) The neutral theory of molecular evolution. Sci. Amer. 241: 94–104

    Article  Google Scholar 

  • Knöckel N, Wittig B, Wittig S, John ME, Grundmann U, Oberthür W, Godovac J, Braunitzer G (1982) No evidence for “stress” α-globin genes in chicken. Nature 295: 710–712

    Article  Google Scholar 

  • Leclercq F, Bauer C, Fraboni A, Paul C, Vandecasserie C, Schnek AG, Braunitzer G (1980) Caiman crocodylus Hemoglobin. Structure and Activity In: Peeters H (ed) Protides and Biological Fluids. 28th Colloquium. Pergamon Press, New York, pp. 79–82

    Google Scholar 

  • Leclercq F, Schnek AG, Braunitzer G, Stangl A, Schrank B (1981) Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate. Sequence of the haemoglobins of the caiman (Caiman crocodylus), the Nile crocodile (Crocodylus niloticus) and the Mississipi crocodile (Alligator mississipiensis). Hoppe-Seyler’s Z. Physiol. Chem. 362: 1151–1158

    Google Scholar 

  • Matsuda G, Maita T, Mizuno K, Ota H (1973) Amino-acid sequence of AII component of adult chicken haemoglobin. Nature New Biology 244: 244

    PubMed  CAS  Google Scholar 

  • Matsuda G, Takei H, Wu KC, Shiozawa T (1971) The primary structure of the a polypeptide chain of AII component of adult chicken hemoglobin. Int. J. Prot. Res. 3: 173–174

    Google Scholar 

  • Oberthür W, Braunitzer G (1984) Hämoglobin vom gemeinen star (Sturnus vulgaris, passeriformes): Die primarstrukturen der αA und ßB -ketten. Hoppe-Seyler’s Z. Physiol. Chem. 365: 159–173

    Google Scholar 

  • Oberthür W, Braunitzer G, Kalas S (1981) Untersuchungen am hämoglobin der graugans (Anser anser). Die primarstruktur der α-und ß-ketten der hauptkomponents. Hoppe-Seyler’s Z. Physiol. Chem. 362: 1101–1112

    Google Scholar 

  • Oberthür W, Braunitzer G, Würdinger I (1982) Das hämoglobin der streifengans (Anser indicus) Primärstruktur und physiologie der atmung, systematik und evolution. Hoppe-Seyler’s Z. Physiol. Chem. 363: 581–590

    Google Scholar 

  • Oberthür W, Braunitzer G, Baumann R, Wright P (1983a) Die primärstruktur der α-und ß-ketten der hauptkomponenten der hämoglobine der straubes (Struthio camelus) und des nandus (Rhea americana) (Struthio formes). Aspekte zur almungs physiologie und systematik. Hoppe-Seyler’s Z. Physiol. Chem. 364: 119–134

    Google Scholar 

  • Oberthür W, Braunitzer G, Grimm F, Kösters J (1983b) Hämoglobindes steinadlers (Aquila chrysaetos, aeeipitriformes): Die aminosaure-sequenz der αA und ßB-ketten der hauptkom-ponente. Hoppe-Seyler’s Z. Physiol. Chem. 364: 851–858

    Google Scholar 

  • Oberthür W, Godovac-Zimmermann J, Braunitzer G (1982) The amino-acid sequence of canada goose (Branta canadensis) and mute swan (Cyqnus olor) Hemoglobins. Two different species with identical ß chains. Hoppe-Seyler’s Z. Physiol. Chem. 363: 777–787

    Google Scholar 

  • Oberthür W, Godovac-Zimmermann J, Braunitzer G (1983c) The different evolution of bird hemoglobin chains in hemoglobin. Brussels Hemoglobin Symposium. Schnek AG, Paul C (eds) Editions de l’Université de Bruxelles, pp. 365–375

    Google Scholar 

  • Oberthür W, Wiesner H, Braunitzer G (1983d) Die primarstruktur der α-und ß-ketten der hauptkomponente der hämoglobine der spattfubgans (Anseranas semipalmata, anatidae). Hoppe-Seyler’s Z. Physiol. Chem. 364: 51–59

    Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol. Biol. Evol. 1: 1–28

    PubMed  CAS  Google Scholar 

  • Perutz MF, Bauer C, Gros G, Leclercq F, Vandecasserie C, Schnek AG, Braunitzer G, Friday AE, Joysey KA (1981) Allosteric regulation of crocodilian hemoglobin. Nature 291: 682–684

    Article  PubMed  CAS  Google Scholar 

  • Petschow D, Wurdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C (1977) Causes of high blood affinity of animals living at high altitude. J. Appl. Physiol. 42: 139–143

    Google Scholar 

  • Rapoport S, Guest GM (1941) Distribution of acid soluble phosphorus in the blood cells of various vertebrates. J. Biol. Chem. 138: 269–282

    Google Scholar 

  • Rollema HS, Bauer C (1979) The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J. Biol. Chem. 254: 12038–12043

    Google Scholar 

  • Römer AS (1966) Vertebrate paleontology. Chicago-London: University of Chicago Press

    Google Scholar 

  • Romero-Herrera AE, Lehmann H, Joysey KA, Friday AE (1978) The use of amino-acid sequence analysis in assessing evolution. Phil. Trans. R. Soc. B. 283: 61–163

    Google Scholar 

  • Steward JH, Tate ME (1969) Gel chromatography of inositol polyphosphates and the avian haemoglobin-inositol pentaphosphate complex. J. Chromatogr. 45: 400–406

    Article  PubMed  CAS  Google Scholar 

  • Takei H, Ota Y, Wu K, Kiyohara I, Matsuda G (1975) Amino acid sequence of the a chain of chicken AI Hemoglobin. J. Biochem. 77: 1345–1347

    PubMed  CAS  Google Scholar 

  • Vandecasserie C, Fraboni A, Schnek AG, Léonis J (1976) Oxygen affinity of some avian hemoglobins in presence of various phosphorylated cofactors. Colloque sur l’Hémoglobine (Le Touquet — Paris-Plage; 25 mai 1976 ) p. 34

    Google Scholar 

  • Vandecasserie C, Paredes S, Schnek AG, Léonis J (1974) Etude calorimétrique de la fixation de l’inositolhexaphosphate sur l’hémoglobine de pigeon. Arch. Intern. Physiol. Bioch. 82: 1021–1023

    Google Scholar 

  • Vandecasserie C, Paul C, Schnek AG, Léonis J (1973) Oxygen affinity of avian hemoglobins. Comp. Biochem. Physiol. 44A: 711–718

    Google Scholar 

  • Vandecasserie C, Schnek AG, Léonis J (1971) Oxygen affinity studies of avian hemoglobins. Chicken and pigeon. Eur. J. Biochem. 24: 284–28

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnek, A.G., Paul, C., Leonis, J. (1985). Evolution and Adaptation of Avian and Crocodilian Hemoglobins. In: Lamy, J., Truchot, JP., Gilles, R. (eds) Respiratory Pigments in Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70616-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70616-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15629-1

  • Online ISBN: 978-3-642-70616-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics