Structure and Function of Hemerythrins

  • W. A. Hendrickson
  • J. L. Smith
  • S. Sheriff


Nature has evolved three fundamentally different molecular devices to serve as oxygen carriers in support of animal respiration. The striking color and abundant supply of these proteins has made them frequent subjects of study. Hemoglobin is the familiar red substance in the blood of humans and many other animals; hemocyanin is the blue pigment in the blood of many molluscs and arthropods; and hemerythrin is the burgundy colored protein in the body fluids of a few minor invertebrate phyla. There is considerable diversity in the physiological parameters and in the structure and symmetry of hemoglobins and hemocyanins. It appears from recent work that the less thoroughly studied hemerythrin family also exhibits such diversity although the basic framework of the protein and active center appear to be conserved through evolution.


Oxygen Carrier Resonance Raman Spectrum Magnetic Susceptibility Data Respiratory Pigment Binuclear Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babcock LM, Brandic Z, Harrington PC, Wilkins RG, Yoneda GS (1980) Preparation, disproportionation, and reactions of two semi-met forms of hemerythrin. J. Amer. Chem. Soc. 102: 2849–2850Google Scholar
  2. Bates G, Brunori M, Amiconi G, Antonini E, Wyman J (1968) Studies on hemerythrin. I. Thermodynamic and kinetic aspects of oxygen binding. Biochemistry 7: 3016–3020Google Scholar
  3. Dunn JBR, Shriver DF, Klotz IM (1975) Resonance Raman studies of hemerythrin-ligand complexes. Biochemistry 14: 2689–2695PubMedCrossRefGoogle Scholar
  4. Elam WT, Stern EA, McCallum JD, Sanders-Loehr J (1982) Structure of the binuclear iron center in hemerythrin by X-ray absorption spectroscopy. J. Amer. Chem. Soc. 104: 6369–6373Google Scholar
  5. Freier SM, Duff LL, Shriver DF, Klotz IM (1980) Resonance Raman spectroscopy of iron-oxygen vibrations in hemerythrin. Arch. Biochem. Biophys. 205: 449–463Google Scholar
  6. Hendrickson WA, Klippenstein GL, Ward KB (1975) Tertiary structure of myohemerythrin at low resolution. Proc. Natl. Acad. Sci. USA 72: 2160–2164Google Scholar
  7. Hendrickson WA, Co MS, Smith JL, Hodgson KO, Klippenstein GL (1982) X-ray absorption spectroscopy of the dimeric iron site in azidomethemerythrin from Phascolopsis qouldii. Proc. Natl. Acad. Sci. USA 79: 6255–6259Google Scholar
  8. Joshi JG, Sullivan B (1973) Isolation and preliminary characterization of hemerythrin from Linqula urquis. Comp. Biochem. Physiol. 44B: 857–867Google Scholar
  9. Klippenstein GL, Van Riper DA, Oosterom EA (1972) A comparative study of the oxygen transport proteins of Dendrostomurn pyroides. J. Biol. Chem. 247: 5959–5963Google Scholar
  10. Klotz IM, Kurtz DM, Jr. (1984) Binuclear oxygen carriers: hemerythrin. Account Chem. Res. 17: 16–22Google Scholar
  11. Liberatore FA, Truby MF, Klippenstein GL (1974) The quaternary structure of Phascolopsis aqassizii coelomic hemerythrin. Arch. Biochem. Biophys. 160: 223–229Google Scholar
  12. Mangum CP, Kondon K (1975) The role of coelomic hemerythrin in the sipunculid worm Phascolopsis qouldii. Comp. Biochem. Physiol. 50A: 777–785Google Scholar
  13. Manwell C (1960) Histological specificity of respiratory pigments. — II. Oxygen transfer systems involving hemerythrins in sipunculid worms of different ecologies. Comp. Biochem. Physiol. 1: 277–285CrossRefGoogle Scholar
  14. Manwell C (1977) Superoxide dismutase and NADH diaphorase in hemerythrocytes of sipunculans. Comp. Biochem. Physiol. 56B: 331–338Google Scholar
  15. Sieker LC, Bolles L, Stenkamp RE, Jensen LH, Appleby CA (1981) Preliminary X-ray study of a dimeric form of hemerythrin from Phascolosoma arcuatum. J. Mol. Biol. 148: 493–494Google Scholar
  16. Smith JL, Hendrickson WA, Addison AW (1983) Structure of trimeric hemerythrin. Nature 303: 86–88PubMedCrossRefGoogle Scholar
  17. Stenkamp RE, Sieker LC, Jensen LH, Loehr JS (1976) Structure of methemerythrin at 5 Å resolution. J. Moi. Biol. 100: 23–3Google Scholar
  18. Stenkamp RE, Sieker LC, Jensen LH, Sanders-Loehr J (1981) Structure of the binuclear iron complex in metazido hemerythrin from Themista dyscritum at 2 A resolution. Nature 291: 263–264CrossRefGoogle Scholar
  19. Stenkamp RE, Sieker LC, Jensen LH (198%) Restrained least-squares refinement of Themiste dyscritum methydroxohemerythrin at 2.0 Å resolution. Acta Cryst. B38: 784–792Google Scholar
  20. Ward KB, Hendrickson WA, Klippenstein GL (1975) Quaternary and tertiary structure of hemerythri. Nature: 257: 818–82PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • W. A. Hendrickson
  • J. L. Smith
  • S. Sheriff

There are no affiliations available

Personalised recommendations