Skip to main content

Structure and Function of Hemerythrins

  • Conference paper
Respiratory Pigments in Animals

Abstract

Nature has evolved three fundamentally different molecular devices to serve as oxygen carriers in support of animal respiration. The striking color and abundant supply of these proteins has made them frequent subjects of study. Hemoglobin is the familiar red substance in the blood of humans and many other animals; hemocyanin is the blue pigment in the blood of many molluscs and arthropods; and hemerythrin is the burgundy colored protein in the body fluids of a few minor invertebrate phyla. There is considerable diversity in the physiological parameters and in the structure and symmetry of hemoglobins and hemocyanins. It appears from recent work that the less thoroughly studied hemerythrin family also exhibits such diversity although the basic framework of the protein and active center appear to be conserved through evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babcock LM, Brandic Z, Harrington PC, Wilkins RG, Yoneda GS (1980) Preparation, disproportionation, and reactions of two semi-met forms of hemerythrin. J. Amer. Chem. Soc. 102: 2849–2850

    Google Scholar 

  • Bates G, Brunori M, Amiconi G, Antonini E, Wyman J (1968) Studies on hemerythrin. I. Thermodynamic and kinetic aspects of oxygen binding. Biochemistry 7: 3016–3020

    Google Scholar 

  • Dunn JBR, Shriver DF, Klotz IM (1975) Resonance Raman studies of hemerythrin-ligand complexes. Biochemistry 14: 2689–2695

    Article  PubMed  CAS  Google Scholar 

  • Elam WT, Stern EA, McCallum JD, Sanders-Loehr J (1982) Structure of the binuclear iron center in hemerythrin by X-ray absorption spectroscopy. J. Amer. Chem. Soc. 104: 6369–6373

    Google Scholar 

  • Freier SM, Duff LL, Shriver DF, Klotz IM (1980) Resonance Raman spectroscopy of iron-oxygen vibrations in hemerythrin. Arch. Biochem. Biophys. 205: 449–463

    Google Scholar 

  • Hendrickson WA, Klippenstein GL, Ward KB (1975) Tertiary structure of myohemerythrin at low resolution. Proc. Natl. Acad. Sci. USA 72: 2160–2164

    Google Scholar 

  • Hendrickson WA, Co MS, Smith JL, Hodgson KO, Klippenstein GL (1982) X-ray absorption spectroscopy of the dimeric iron site in azidomethemerythrin from Phascolopsis qouldii. Proc. Natl. Acad. Sci. USA 79: 6255–6259

    Google Scholar 

  • Joshi JG, Sullivan B (1973) Isolation and preliminary characterization of hemerythrin from Linqula urquis. Comp. Biochem. Physiol. 44B: 857–867

    Google Scholar 

  • Klippenstein GL, Van Riper DA, Oosterom EA (1972) A comparative study of the oxygen transport proteins of Dendrostomurn pyroides. J. Biol. Chem. 247: 5959–5963

    Google Scholar 

  • Klotz IM, Kurtz DM, Jr. (1984) Binuclear oxygen carriers: hemerythrin. Account Chem. Res. 17: 16–22

    Google Scholar 

  • Liberatore FA, Truby MF, Klippenstein GL (1974) The quaternary structure of Phascolopsis aqassizii coelomic hemerythrin. Arch. Biochem. Biophys. 160: 223–229

    Google Scholar 

  • Mangum CP, Kondon K (1975) The role of coelomic hemerythrin in the sipunculid worm Phascolopsis qouldii. Comp. Biochem. Physiol. 50A: 777–785

    Google Scholar 

  • Manwell C (1960) Histological specificity of respiratory pigments. — II. Oxygen transfer systems involving hemerythrins in sipunculid worms of different ecologies. Comp. Biochem. Physiol. 1: 277–285

    Article  CAS  Google Scholar 

  • Manwell C (1977) Superoxide dismutase and NADH diaphorase in hemerythrocytes of sipunculans. Comp. Biochem. Physiol. 56B: 331–338

    Google Scholar 

  • Sieker LC, Bolles L, Stenkamp RE, Jensen LH, Appleby CA (1981) Preliminary X-ray study of a dimeric form of hemerythrin from Phascolosoma arcuatum. J. Mol. Biol. 148: 493–494

    Google Scholar 

  • Smith JL, Hendrickson WA, Addison AW (1983) Structure of trimeric hemerythrin. Nature 303: 86–88

    Article  PubMed  CAS  Google Scholar 

  • Stenkamp RE, Sieker LC, Jensen LH, Loehr JS (1976) Structure of methemerythrin at 5 Ã… resolution. J. Moi. Biol. 100: 23–3

    Google Scholar 

  • Stenkamp RE, Sieker LC, Jensen LH, Sanders-Loehr J (1981) Structure of the binuclear iron complex in metazido hemerythrin from Themista dyscritum at 2 A resolution. Nature 291: 263–264

    Article  Google Scholar 

  • Stenkamp RE, Sieker LC, Jensen LH (198%) Restrained least-squares refinement of Themiste dyscritum methydroxohemerythrin at 2.0 Ã… resolution. Acta Cryst. B38: 784–792

    Google Scholar 

  • Ward KB, Hendrickson WA, Klippenstein GL (1975) Quaternary and tertiary structure of hemerythri. Nature: 257: 818–82

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hendrickson, W.A., Smith, J.L., Sheriff, S. (1985). Structure and Function of Hemerythrins. In: Lamy, J., Truchot, JP., Gilles, R. (eds) Respiratory Pigments in Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70616-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70616-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15629-1

  • Online ISBN: 978-3-642-70616-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics