Skip to main content

Passive Cl- Currents in Toad Skin: Potential Dependence and Relation to Mitochondria-Rich Cell Density

  • Conference paper
Transport Processes, Iono- and Osmoregulation

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

In tight epithelia, like amphibian skin, the net flow of Cl- ions is predominantly passive and reflects the electrochemical potential gradient across the skin. In the present paper, we shall discuss the dependence of the Cl- current on the transepithelial potential difference. Our hypothesis is that the potential provides not only the driving force for the Cl- flux, but controls the Cl- permeability as well. Evidence is also presented that the passive Cl- pathway is localized to a special cell type, the mitochondria-rich cells. Modes of Cl- permeability regulation, which have been discussed in the literature, are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruus K, Kristensen P, Larsen EH (1976) Pathways for chloride and sodium transport across toad skin. Acta Physiol Scand 97:21–47

    ArticleΒ  Google ScholarΒ 

  • Candia OA (1978) Reduction of chloride fluxes by amiloride across the short circuited frog skin. Am J Physiol 234:F437–F445

    PubMedΒ  CASΒ  Google ScholarΒ 

  • Cuthbert AW, Painter E (1968) The effect of theophylline on chloride permeability and active chloride transport in various epithelia. J Pharm Pharmacol 20:492–495

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Ferreira KTG, Ferreira HG (1981) The regulation of volume and ion composition of frog skin. Biochim Biophys Acta 646:193–202

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Foskett KJ, Bern HA, Machen TE, Conner M (1983) Chloride cells and the hormonal control of teleost fish osmoregulation. J Exp Biol 106:255

    PubMedΒ  CASΒ  Google ScholarΒ 

  • Giraldez F, Ferreira KTG (1984) Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria). Biochim Biophys Acta 769:625–628

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Helman SI, Fisher RS (1977) Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol 69:571–604

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    PubMedΒ  CASΒ  Google ScholarΒ 

  • Katz U, Larsen EH (1984) Chloride transport in toad skin (Bufo viridis). The effect of salt adaptation. J Exp Biol 109:353–372

    PubMedΒ  CASΒ  Google ScholarΒ 

  • Kirschner LB (1983) Sodium chloride absorption across the body surface: frog skin and other epithelia. Am J Physiol 244:R429–R443

    PubMedΒ  CASΒ  Google ScholarΒ 

  • Kristensen P (1978) Effect of amiloride on chloride transport across amphibian epithelia. J Membr Biol 40:167–185

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Kristensen P (1981) Is chloride transfer in frog skin localized to a special cell type? Acta Physiol Scand 113:123–124

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Kristensen P (1982) Chloride transport in frog skin. In: Zadunaisky JA (ed) Chloride transport in biological membranes. Academic, New York, p 319–332

    Google ScholarΒ 

  • Kristensen P (1983) Exchange diffusion, electrodiffusion and rectification in the chloride transport pathway of frog skin. J Membr Biol 72:141–151

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Larsen EH (1982) Chloride current rectification in toad skin epithelium. In: Zadunaisky JA (ed) Chloride transport in biological membranes. Academic, New York, pp 333–364

    Google ScholarΒ 

  • Larsen EH, Kristensen P (1978) Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo). Acta Physiol Scand 102:1–21

    ArticleΒ  CASΒ  Google ScholarΒ 

  • Larsen EH, Rasmussen BE (1982) Chloride channels in toad skin. Philos Trans R Soc Lond Biol Sci 299:413–434

    ArticleΒ  CASΒ  Google ScholarΒ 

  • Larsen EH, Rasmussen BE (1983) Membrane potential plays a dual role for chloride transport across toad skin. Biochim Biophys Acta 728:455–459

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Larsen EH, Rasmussen BE (1985) A mathematical model of amphibian skin epithelium with two types of transporting cellular units. PflΓΌger Arch Eur J Physiol (in press)

    Google ScholarΒ 

  • Larsen EH, Rasmussen BE, Willumsen N (1981) Computer model of transporting epithelial cells. Analysis of current-voltage and current-time curves. In: Salanki J (ed) Advances in physiological sciences, vol III. Pergamon, New York, pp 115–127

    Google ScholarΒ 

  • Macey RI, Meyers S (1963) Dependence of chloride permeability on sodium in the isolated frog skin. Am J Physiol 204:1095–1099

    CASΒ  Google ScholarΒ 

  • Mandel LO (1975) Actions on external hypotonic urea, ADH, and theophylline on transcellular and extracellular solute permeabilities in frog skin. J Gen Physiol 55:599–615

    ArticleΒ  Google ScholarΒ 

  • Nagel W (1976) The intracellular electrical potential profile of the frog skin epithelium. PflΓΌgers Arch Eur J Physiol 365:135–143

    ArticleΒ  CASΒ  Google ScholarΒ 

  • Nagel W, Garcia-Diaz JF, Armstrong WMcD (1981) Intracellular ionic activities in frog skin. J Membr Biol 61:127–134

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Ques-von Petery MV, Rotunno CA, Cereijido M (1978) Studies on chloride permeability of the skin of Leptodactylus ocellatus I. Na+ and Cl- effect on passive movement of Cl-. J Membr Biol 42:317–330

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Rick R, DΓΆrge A, von Arnim E, Thurau K (1978) Electron microprobe analysis of frog skin ephithelium: evidence for a syncytial sodium transport compartment J Membr Biol 39:313–331

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • Rudneff M (1865) Über die epidermoidale Schicht der Froschhaut. Arch Mikrosk Anat 1:295–298

    ArticleΒ  Google ScholarΒ 

  • Ussing HH (1949) The distinction by means of tracers between active transport and diffusion. Acta Physiol Scand 19:43–56

    ArticleΒ  CASΒ  Google ScholarΒ 

  • Ussing HH (1982) Volume regulation of frog skin epithelium. Acta Physiol Scand 114:363–369

    ArticleΒ  PubMedΒ  CASΒ  Google ScholarΒ 

  • VoΓ»te CL, Meier W (1978) The mitochondria rich cell of frog skin as hormone sensitive β€˜shunt path’. J Membr Biol 40:141–165

    Google ScholarΒ 

  • Whitear M (1975) Flask cells and epidermal dynamics in frog skin. J Zool (Lond) 175:107–149

    ArticleΒ  Google ScholarΒ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Β© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Willumsen, N.J., Larsen, E.H. (1987). Passive Cl- Currents in Toad Skin: Potential Dependence and Relation to Mitochondria-Rich Cell Density. In: Gilles, R., Gilles-Baillien, M. (eds) Transport Processes, Iono- and Osmoregulation. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70613-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70613-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70615-8

  • Online ISBN: 978-3-642-70613-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics