Skip to main content

The Gut as an Osmoregulatory Organ: Comparative Aspects and Special References to Fishes

  • Conference paper
Transport Processes, Iono- and Osmoregulation

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

When considering the gut as an osmoregulatory organ, it must be kept in mind that the basic function of the gut is to split foodstuffs into simple compounds, small enough to cross cell membranes. The splitting of foodstuffs results in a considerable increase in the number of independent substrate particles in the digestive fluid: more than 100 amino acid molecules for one protein molecule and up to 500,000 monosaccharide molecules for one starch molecule. Splitting occurs in closed systems which appear in animal evolution in the following successive stages: the intracellular food vacuoles in Protozoa, the digestive sac (the enteron) in primitive invertebrates and finally the alimentary canal made up of successive parts allowing for simultaneous feeding and digestion. Moreover, many metabolites need sodium ions to be absorbed by cotransport into the digestive cells. The gut must ensure ion requirements for coupled ion-substrate absorption and also prevent deleterious variations in osmotic pressure. This is made possible either by a strong correlation between hydrolysis and metabolite absorption as is the case in filter feeders with continuous food supply or by osmoregulation by the gut epithelium in the general case of sequential feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen A, Flemström G, Garner A, Silen W, Turnberg LA (1984) Mechanisms of mucosal protection in the upper gastrointestinal tract. Raven, New York

    Google Scholar 

  • Ando M (1975) Intestinal water transport and chloride pump in relation to sea-water adaptation of the eel, Anguilla japonica. Comp Biochem Physiol 52A:229–233

    Article  Google Scholar 

  • Ando M (1980) Chloride-dependent sodium and water transport in the sea-water eel intestine. J Comp Physiol 138:87–91

    CAS  Google Scholar 

  • Ando M (1981) Potassium-dependent chloride transport in the seawater eel intestine. J Physiol Soc Jpn 43:282

    Google Scholar 

  • Ando M (1983) Potassium-dependent chloride and water transport across the sea-water eel intestine. J Membr Biol 73:125–130

    Article  PubMed  CAS  Google Scholar 

  • Ando M, Kobayashi M (1978) Effects of stripping of the outer layers of the eel intestine on salt and water transport. Comp Biochem Physiol 61A:497–501

    CAS  Google Scholar 

  • Bahl KN (1945) Studies on the structure, development and physiology of the nephridia of the oligochaeta. VI. The physiology of excretion and the significance of the enteronephric type of nephridial system in Indian earthworms. Q J Microsc Sci 85:342–389

    Google Scholar 

  • Benos DJ, Prush RD (1972) Osmoregulation in fresh-water Hydra. Comp Biochem Physiol 43A:165–171

    Article  Google Scholar 

  • Chain BM (1980) The transepithelial potential and osmotic regulation in the green Hydra. J Exp Biol 88:161–173

    CAS  Google Scholar 

  • Cornell JC (1982) Sodium and chloride transport in the isolated intestine of the earthworm, Lumbricus terrestris (L). J Exp Biol 97:197–216

    PubMed  CAS  Google Scholar 

  • Crowther RS, Marriott C (1984) Counter ion binding to mucus glycoproteins. J Pharmacol 36:21–26

    Article  CAS  Google Scholar 

  • Dow JAT (1981a) Countercurrent flows, water movements and nutrient absorption in the locust midgut. J Insect Physiol 27(9):579–585

    Article  Google Scholar 

  • Dow JAT (1981b) Ion and water transport in locust alimentary canal: evidence from in vivo electrochemical gradients. J Exp Biol 93:167–179

    Google Scholar 

  • Duffey ME, Thompson SM, Frizzell RA, Schultz SG (1979) Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder. J Membr Biol 50: 331–341

    Article  PubMed  CAS  Google Scholar 

  • Edney EB (1977) Water balance in land arthropods. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fletcher CR (1978) Osmotic and ionic regulation in the cod (Gadus callarias L.). I. Water balance. J Comp Physiol 124:149–155

    CAS  Google Scholar 

  • Frizzell RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236(1):F1–F8

    PubMed  CAS  Google Scholar 

  • Geddes MC (1975a) Studies on an australian brine shrimp, Parartemia zietziania sayce (Crustacea: Anostraca). I. Salinity tolerance. Comp Biochem Physiol 51A:553–559

    Article  Google Scholar 

  • Geddes MC (1975b) Studies on an australian brine shrimp, Parartemia zietziana sayce (Crustacea Anostraca). II. Osmotic and ionic regulation. Comp Biochem Physiol 51A:561–572

    Article  Google Scholar 

  • Geddes MC (1975c) Studies on an australian brine shrimp, Parartemia zietziana sayce (Crustacea: Anostraca). III. The mechanisms of osmotic and ionic regulation. Comp Biochem Physiol 51A: 573–578

    Article  Google Scholar 

  • Gerencser GA (1981) Effect of amino acids on chloride transport in Aplysia intestine. Am J Physiol 240:R61–R69

    PubMed  CAS  Google Scholar 

  • Gerencser GA (1983) Na+ absorption in Aplysia intestine: Na+ fluxes and intracellular Na+ and K+ activities. Am J Physiol 244:R412–R417

    PubMed  CAS  Google Scholar 

  • Gerencser GA, White JF (1980) Membrane potentials and chloride activities in epithelial cells of Aplysia intestine. Am J Physiol 239:R445–R449

    PubMed  CAS  Google Scholar 

  • Gupta BL, Wall BJ, Oschman JL, Hall TA (1980) Direct microprobe evidence of local concentration gradients and recycling of electrolytes during fluid absorption in the rectal papillae of Calliphora. J Exp Biol 88:21–47

    CAS  Google Scholar 

  • Halm DR, Krasny EJ, Frizzell RA (1983) Potassium transport across the intestine of the winter flounder: active secretion and absorption. Membr Biophysics 11:245–255

    Google Scholar 

  • Hanrahan JW, Phillips JE (1983) Cellular mechanisms and control of KCl absorption in insect hind-gut. J Exp Biol 106:71–89

    PubMed  CAS  Google Scholar 

  • Hirano T, Mayer-Gostan N (1976) Eel oesophagus as an osmoregulatory organ. Proc Natl Acad Sci USA 73(4):1348–1350

    Article  PubMed  CAS  Google Scholar 

  • Holstein B (1979a) Gastric acid secretion and water balance in the marine teleost Gadus morhua. Acta Physiol Scand 105:93–107

    Article  PubMed  CAS  Google Scholar 

  • Holstein B (1979b) Gastric acid secretion and drinking in the atlantic cod (Gadus morhua) during acidic or hyperosmotic perfusion of the intestine. Acta Physiol Scand 106:257–265

    Article  PubMed  CAS  Google Scholar 

  • Humbert W, Kirsch R, Meister MF (1984) Scanning electron microscopic study of the oesophageal mucous layer in the eel Anguilla anguilla L. J Fish Biol 25:117–122

    Article  Google Scholar 

  • Kirsch R (1978) Role of the oesophagus in osmoregulation in teleost fishes. In “Osmotic and volume regulation”. Alfred Benzon Symposium XI. Munksgaard Academic, New York, pp 138 – 154

    Google Scholar 

  • Kirsch R, Meister MF (1982) Progressive processing of the ingested water in the gut of the sea-water teleosts. J Exp Biol 98:67–81

    PubMed  CAS  Google Scholar 

  • Kirsch R, Guinier D, Meens R (1975) L’équilibre hydrique de l’Anguille européenne (Anguilla anguilla L.). Etude du rôle de l’oesophage dans l’utilisation de l’eau de boisson et étude de la perméabilité osmotique branchiale. J Physiol Paris 70:605–626

    PubMed  CAS  Google Scholar 

  • Kirsch R, Humbert W, Rodeau JL (1984) Control of the blood osmolarity in fishes with references to the functional anatomy of the gut. In: Péqueux A, Gilles R, Bolis L (eds) Osmoregulation in estuarine and marine animals. Springer, Berlin Heidelberg New York, pp 67–92

    Google Scholar 

  • Long S, Skadhauge E (1983) The role of urinary precipitates in the excretion of electrolytes and urate in the domestic fowl. J Exp Biol 104:41–50

    PubMed  CAS  Google Scholar 

  • Madga DS (1975) The mammalian alimentary system. Arnold, London

    Google Scholar 

  • Meister MF, Humbert W, Kirsch R, Vivien-Roels B (1983) Structure and ultrastructure of the esophagus in sea-water and fresh-water teleosts (Pisces). Zoomorphology 102:33–51

    Article  Google Scholar 

  • Oglesby LC (1978) Salt and water balance. In: Mill PJ (ed) Physiology of Annelids. Academic, London, pp 555–658

    Google Scholar 

  • Palfrey HC, Rao MC (1983) Na/K/Cl co-transport and its regulation. J Exp Biol 106:43–54

    PubMed  CAS  Google Scholar 

  • Parmelee JT, Renfro JL (1983) Oesophageal desalination of seawater in flounder: role of active sodium transport. Am J Physiol 245:R888–R893

    PubMed  CAS  Google Scholar 

  • Rice GE, Skadhauge E (1982a) The in vivo dissociation of colonic and coprodeal transepithelial transport in NaCl depleted domestic fowl. J Comp Physiol 146:51–56

    Google Scholar 

  • Rice GE, Skadhauge E (1982b) Colonic and coprodeal transepithelial transport parameters in NaCl-loaded domestic fowl. J Comp Physiol 147:65–69

    CAS  Google Scholar 

  • Sharratt BM, Bellamy D, Chester JI (1964) Adaptation of the silver eel (Anguilla anguilla L.) to sea-water and to artificial media together with observations on the role of the gut. Comp Biochem Physiol 11:19–30

    Article  PubMed  CAS  Google Scholar 

  • Shehadeh ZH, Gordon MS (1969) The role of intestine in salinity adaptation of the rainbow trout, Salmo gairdneri. Comp Biochem Physiol 30:397–418

    Article  CAS  Google Scholar 

  • Shephard KL (1982) The influence of mucus on the diffusion of ions across the oesophagus of fish. Physiol Zool 54(2):224–229

    Google Scholar 

  • Skadhauge E (1969) The mecanism of salt and water absorption in the intestine of the eel (Anguilla anguilla) adapted to waters of various salinities. J Physiol 204:135–158

    PubMed  CAS  Google Scholar 

  • Skadhauge E (1974) Coupling of transmural flows of NaCl and water in the intestine of the eel (Anguilla anguilla). J Exp Biol 60:535–546

    PubMed  CAS  Google Scholar 

  • Skadhauge E (1981) Osmoregulation in birds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith HW (1930) The absorption and excretion of water and salts by marine teleosts. Am J Physiol 93:480–505

    CAS  Google Scholar 

  • Thuet P (1982) Ecophysiological adaptations of Artemia (Crustacea, Branchiopoda, Anostraca) to changes in salinity. Bull Soc Ecophysiol 7:203–225

    Google Scholar 

  • Westphal A (1976) Protozoa. Blackie, Glasgow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirsch, R., Humbert, W., Simonneaux, V. (1985). The Gut as an Osmoregulatory Organ: Comparative Aspects and Special References to Fishes. In: Gilles, R., Gilles-Baillien, M. (eds) Transport Processes, Iono- and Osmoregulation. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70613-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70613-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70615-8

  • Online ISBN: 978-3-642-70613-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics