Skip to main content

Cardiac Energy Metabolism in Relation to Work Demand and Habitat in Bivalve and Gastropod Mollusks

  • Conference paper
Circulation, Respiration, and Metabolism

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Bivalve and gastropod mollusks show considerable diversity in terms of habitat, general behavior, and degree of activity. Some species are sluggish or sessile, while others, such as scallops and sea hares display a high degree of locomotory activity. The cardiovascular systems of bivalve and gastropod mollusks show the same general functional arrangement, although there is considerable variation in the structure of the heart (Hill and Welsh 1966). Animals in these two groups display a broad range of hemodynamic properties (Jones 1983). The circulatory system may participate in a wide variety of processes including water and ion balance, gas transport, and locomotion (Smith 1985) as well as nutrient translocation. In general, heart rates and pressure development are low especially when viewed in terms of cardiovascular function in cephalopods (Smith 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baginski RM, Pierce SK (1978) A comparison of amino acid accumulation during high salinity adaptation with anaerobic metabolism in the ribbed muscle Modiolus demissus. J Exp Zool 203: 419–428

    Article  CAS  Google Scholar 

  • Ballantyne JS, Storey KB (1983) Mitochondria from the ventricle of the marine clam Mercenaria mercenaria: substrate preferences and pH and salt concentration on proline oxidation. Comp Biochem Physiol 76B: 133–138

    Article  Google Scholar 

  • Brand AR, Roberts D (1973) The cardiac responses of the scallop Pecten maximus L. to respiratory stress. J Exp Mar Biol Ecol 13: 29–43

    Article  Google Scholar 

  • Cole RP (1983) Skeletal muscle function in hypoxia: effect of alteration of intracellular myoglo- bin. Respir Physiol 58: 1–14

    Article  Google Scholar 

  • Collicutt JM, Hochachka PW (1977) The anaerobic oyster heart: coupling of glucose and aspartate fermentation. J Comp Physiol 115: 147–157

    CAS  Google Scholar 

  • Deaton LE, Mangum CP (1978) The cardiac response of the ponderous ark clam, Noetia ponderosa, to reduced oxygen levels. Comp Biochem Physiol 59A: 229–230

    Article  Google Scholar 

  • Driedzic WR, Stewart JM (1982) Myoglobin content and activities of enzymes of energy metabolism in red and white fîsh hearts. J Comp Physiol 149: 67–73

    CAS  Google Scholar 

  • Driedzic WR, Stewart JM, Scott DL (1982) The protective effect of myoglobin during hypoxic perfusion of isolated fish hearts. J Mol Cell Cardiol 14: 673–677

    Article  PubMed  CAS  Google Scholar 

  • Dykens JA, Mangum CP (1979) The design of cardiac muscle and the mode of metabolism in molluscs. Comp Biochem Physiol 62A: 549–554

    Article  Google Scholar 

  • Ellington WR (1981) Energy metabolism during hypoxia in the isolated, perfused ventricle of the whelk, Busycon contrarium. J Comp Physiol 142: 457–464

    CAS  Google Scholar 

  • Ellington WR (1983) Phosphorus nuclear magnetic resonance studies of energy metabolism in molluscan tissues: Effect of anoxia and ischemia on the intracellular pH and high energy phosphates in the ventricle of the whelk Busycon contrarium. J Comp Physiol 153: 159–166

    CAS  Google Scholar 

  • Fiore GB, Nicchitta CV, Ellington WR (1984) High-performance liquid chromatographic separation and quantification of alanopine and strombine in crude tissue extracts. Anal Biochem 139: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Foreman RA, Ellington WR (1983) Effects of inhibitors and substrate supplementation on anaerobic energy metabolism in the ventricle of the oyster, Crassostrea virginica. Comp Biochem Physiol 74B: 543–547

    Article  Google Scholar 

  • Gäde G, Ellington WR (1983) The anaerobic molluscan heart: Adaptation to environmental anoxia. Comparison with energy metabolism in vertebrate hearts. Comp Biochem Physiol 76A: 615–620

    Article  Google Scholar 

  • Giovane A, Greco G, Maresia A, Tota B (1980) Myoglobin in the heart of tuna and other fishes. Experientia 36: 219–220

    Article  PubMed  CAS  Google Scholar 

  • Goldspink G (1983) Alterations in myofibril size and structure during growth, exercise and changes in environmental temperature. In: Peachy LD (ed) Handbook of physiology. American Physiological Society, Bethesda, p 539

    Google Scholar 

  • Graham RA, Ellington WR (1984) Intracellular pH change and the qualitative nature of anaerobic end products in molluscan cardiac muscle. Am Zool 24: 134A

    Google Scholar 

  • Greenwalt DE, Bishop SH (1980) Effect of aminotransferase inhibitors on the pattern of free amino acid accumulation in isolated mussel hearts subjected to hyperosmotic stress. Physiol Zool 53: 262–269

    CAS  Google Scholar 

  • Hawkins WE, Howse HD, Sarphie TG (1980) Ultrastructure of the heart of the oyster Crassostrea virginica. J Submicrosc Cytol 12: 359–374

    Google Scholar 

  • Hill RB, Welsh JH (1966) Heart, circulation and blood cells. In: Wilbur KM, Yonge CM (eds) The physiology of mollusca, vol II. Academic Press, New York, p 125

    Google Scholar 

  • Hochachka PW (1980) Living without oxygen. Harvard University Press, Cambridge

    Google Scholar 

  • Hoppeler H, Lindstedt SL, Claassen H, Taylor CR, Mathieu O, Weibel ER (1984) Scaling of mitochondria volume in heart to body mass. Respir Physiol 55: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Irisawa H, Irisawa A, Shigeto N (1973) Physiological and morphological correlation of the functional syncytium in the bivalve myocardium. Comp Biochem Physiol 44A: 207–219

    Article  Google Scholar 

  • Jamieson DD, de Rome P (1979) Energy metabolism in the heart of the molluscs Tapes watlingi. Comp Biochem Physiol 63B: 399–405

    Google Scholar 

  • Jamieson DD, de Rome P (1979) Energy metabolism in the heart of the molluscs Tapes watlingi. Comp Biochem Physiol 63B: 399–405

    Google Scholar 

  • Josephson RK (1975) Extensive and intensive factors determining the performance of striated muscle. J Exp Zool 194: 135–154

    Article  PubMed  CAS  Google Scholar 

  • Kelly RE, Hayes RL (1968) The ultrastructure of smooth cardiac muscle in the clam, Venus mercenaria. J Morph 127: 163–176

    Article  Google Scholar 

  • Keppler D, Decker K (1974) Glycogen-determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, p 1127

    Google Scholar 

  • Lawrie RA (1953) The activity of the cytochrome system in muscle and its relation to myoglobin. Biochem J 55: 298–305

    PubMed  CAS  Google Scholar 

  • Livingstone DR, de Zwaan A (1983) Carbohydrate metabolism of gastropods. In: Hochachka PW (ed) The mollusca, vol I. Academic, New York, p 177

    Google Scholar 

  • Livingstone DR, de Zwaan A, Thompson RJ (1981) Aerobic metabolism, octopine production and phosphoarginine as sources of energy in the phasic and catch adductor muscles of the giant scallop Placopecten magellanicus during swimming and the subsequent recovery period. Comp Biochem Physiol 70B: 35–44

    Google Scholar 

  • Livingstone DR, de Zwaan A, Leopold M, Marteijn E (1983) Studies on the phylogenetic distribution of pyruvate oxidoreductases. Biochem Syst Ecol 11: 415–425

    CAS  Google Scholar 

  • Mangum CP, Polites G (1980) Oxygen uptake and transport in the prosobranch molluscs Busycon canaliculatum I. Gas exchange and the response to hypoxia. Biol Bull 158: 77–90

    Article  Google Scholar 

  • Mangum CP, Polites G (1980) Oxygen uptake and transport in the prosobranch molluscs Busycon canaliculatum I. Gas exchange and the response to hypoxia. Biol Bull 158: 77–90

    Article  Google Scholar 

  • Nomura S (1950) Energetics of the heart muscle of the oyster, work performed and oxygen consumption. Sci Rep Tohoku Univ 18: 279–285

    CAS  Google Scholar 

  • North RJ (1963) The fine structure of the myofibers in the heart of the snail Helix aspersa. J Ultrastruc Res 8: 206–218

    Article  CAS  Google Scholar 

  • Pierce SK (1971) A source of solute for volume régulation in marine mussels. Comp Biochem Physiol 38A: 619–635

    Article  CAS  Google Scholar 

  • Read KRH (1966) Molluscan hemoglobin and myoglobin. In: Wilbur KM, Yonge CM (eds) The physiology of molluscan, vol II. Academic, New York, p 209

    Google Scholar 

  • Sanger JW (1979) Cardiac fine structure in selected arthropods and molluscs. Am Zool 19: 9–27

    Google Scholar 

  • Sidell BD (1980) Response of goldfish (Carassius auratus) muscle to acclimation temperature:alterations in biochemistry and proportions of different fiber types. Physiol Zool 53: 98–107

    CAS  Google Scholar 

  • Smith PJS (1985) Molluscan circulation: haemodynamics and the heart. In: Gilles R (ed) Proc lst Int Congr Comp Physiol Biochem, vol 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sugden PH, Newsholme EA (1975) Activities of citrate synthase, NAD linked and NADP linked isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissues from vertebrates and invertebrates. Biochem J 150: 105–111

    PubMed  CAS  Google Scholar 

  • Watts JA, Koch RA, Greenberg MJ, Pierce SK (1981) Ultrastructure of the heart of the marine mussel Geukensia demissia. J Morph 170: 301–319

    Article  Google Scholar 

  • Zammit VA, Newsholme EA (1976) The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerolphosphate dehydrogenase, lactate dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphate kinase, glutamate-oxaloacetate transaminase in relation to carbohydrate utilization in muscles from invertebrates. Biochem J 160: 447–462

    PubMed  CAS  Google Scholar 

  • de Zwaan A (1983) Carbohydrate catabolism in bivalves. In: Hochachka PW (ed) The mollusca, vol I. Academic, New York, p 137

    Google Scholar 

  • de Zwaan A, Dando PR (1984) Phosphoenolpyruvate metabolism in bivalve molluscs. Mol Physiol 5: 285–312

    Google Scholar 

  • de Zwaan A, Thompson RJ, Livingstone DR (1980) Physiological and biochemical aspects of the valve snap and valve closure responses in the giant scallop, Placopecten magellanicus II. Biochemistry. J Comp Physiol 137: 105–114

    Google Scholar 

  • de Zwaan A, de Bont AMT, Hemelraad J (1983) The role of phosphoenolpyruvate carboxykinase in the anaerobic metabolism of the sea mussel Mytilus edulis L. J Comp Physiol 153: 267–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ellington, W.R. (1985). Cardiac Energy Metabolism in Relation to Work Demand and Habitat in Bivalve and Gastropod Mollusks. In: Gilles, R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70610-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70610-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70612-7

  • Online ISBN: 978-3-642-70610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics