Skip to main content

Sugar Uptake by Red Blood Cells

  • Conference paper
Circulation, Respiration, and Metabolism

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Monosaccharides are an important metabolite in many cells. However, owing to their hydrophilic nature, these sugars tend to enter the cell slowly by simple diffusion through the hydrophobic region of the plasma membrane. Consequently, transport mechanisms have evolved which facilitate cellular monosaccharide uptake. Microorganisms have transport system which (1) couple sugar movement to proton translocation (reviewed by Eddy 1982); (2) involve translocation with concomitant phosphorylation (reviewed by Postma and Roseman 1976); and/or (3) transfer sugar by a carrier-mediated, equilizing transport mechanism (Cirillo 1968, 1981). Among phylogenetically higher organisms, the vast majority of work on sugar transport has focused on mammals and has shown that two principle mechanisms of monosaccharide transport exist. One is a concentrative mechanism found in the epithelial lining of the kidney and gut which involves the cotransport of sodium and sugar (Crane 1965; Kinne 1976). The other is found in most other tissues and is an equilizing, sodium-independent monosaccharide transport system (summarized by Stein 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreen-Svedberg A (1933) On the distribution of sugar between plasma and corpuscles in animal and human blood. Skand Arch f. Physiol 66:113–190

    CAS  Google Scholar 

  • Baker PF, Carruthers A (1981) Sugar transport in giant axons of Loligo. J Physiol 316: 481–502

    PubMed  CAS  Google Scholar 

  • Barnett JEG, Holman GD, Munday KA (1973) Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J 131: 211–221

    PubMed  CAS  Google Scholar 

  • Bartlett GR (1982) Phosphates in red cells of a hagfish and a lamprey. Comp Biochem Physiol 73A: 141–145

    Article  CAS  Google Scholar 

  • Bartlett GR, Borgese TA (1976) Phosphate compounds in red cells of the chicken and duck embryo and hatchling. Comp Biochem Physiol 55A: 207–210

    Article  CAS  Google Scholar 

  • Benderoff S, Blostein R, Johnstone RM (1978) Changes in amino acid transport during red cell maturation. Membr Biochem 1: 89–106

    Article  PubMed  CAS  Google Scholar 

  • Boches FS, Goldberg AL (1982) Role for the adenosine triphosphate-dependent proteolytic pathway in reticulocyte maturation. Science 215: 978–980

    Article  PubMed  CAS  Google Scholar 

  • Bolis L (1973) Comparative transport of sugars across red blood cells. In: Bolis L, Schmidt-Nielsen K, Maddrell SHP (eds) Comparative physiology. North Holland, Holland, p 583

    Google Scholar 

  • Bolis L, Luly P (1972) Monosaccharide permeability in brown trout Salmo trutta L. erythrocytes. In: Bolis L, Keynes RD, Wilbrandt W (eds) Role of membranes in secretory processes. North Holland, Holland, p 215

    Google Scholar 

  • Bolis L, Luly P, Baroncelli V (1971) D(+)-Glucose permeability in brown trout Salmo trutta L. erythrocytes. J Fish Biol 3: 273–275

    Article  CAS  Google Scholar 

  • Bond CE (1979) Biology of fishes. WB Saunders, Philadelphia

    Google Scholar 

  • Cala PM (1977) Volume regulation by flounder red blood cells: the role of the membrane potential. J Exp Zool 199: 339–344

    Article  PubMed  CAS  Google Scholar 

  • Carruthers A (1983) Sugar transport in giant barnacle muscle fibers. J Physiol 336: 377–396

    PubMed  CAS  Google Scholar 

  • Carter-Su C, Pessin JE, Mora R, Gitomer W, Czech MP (1982) Photoaffinity labeling of the human erythrocyte D-glucose transporter. J Biol Chem 257: 5419–5425

    PubMed  CAS  Google Scholar 

  • Cirillo VP (1968) Relationship between sugar structure and competition for the sugar transport system in bakers’ yeast. J Baeteriol 95: 603–611

    CAS  Google Scholar 

  • Cirillo VP (1981) Unresolved questions on the mechanism of glucose transport in baker’s yeast. In: Stewart GG, RussellI (eds) Current developments in yeast research. Pergamon, New York, p 299

    Google Scholar 

  • Crane RK (1965) Na+-dependent transport in the intestine and other animal tissues. Fed Proc 24: 1000–1006

    PubMed  CAS  Google Scholar 

  • Czech MP, Lawrence JC Jr, Lynn WS (1974) Hexose transport in isolated brown fat cells, a model system for investigating insulin action on membrane transport. J Biol Chem 249: 5421–5427

    PubMed  CAS  Google Scholar 

  • D’Angelo G (1982) Evidence for an erythrocyte glucose transport system in the belukha whale, Delphinapterus leucas. Cetology 42: 1–9

    Google Scholar 

  • Eddy AA (1982) Mechanisms of solute transport in selected eukaryotic micro-organisms. Adv Microb Physiol 23: 1–78

    Article  PubMed  CAS  Google Scholar 

  • Flores G, Frieden E (1972) Hemolytic effect of phenylhydrazine during amphibian metamorphosis. Dev Biol 27: 406–418

    Article  PubMed  CAS  Google Scholar 

  • Golden SM, Rhoden V (1978) Reconstitution and “transport specificity fraction” of the human erythrocyte glucose transport system; a new approach for identification and isolation of membrane proteins. J Biol Chem 253: 2575–2583

    Google Scholar 

  • Griffin JF, Rampai AL, Jung CY (1982) Inhibition of glucose transport in human erythrocytes by cytochalasins: a model based on diffraction studies. Proc Natl Acad Sci USA 79: 3759 - 3763

    Article  PubMed  CAS  Google Scholar 

  • Hansen CA, Sidell BD (1983) Atlantic hagfish cardiac muscle: metabolic basis of tolerance to anoxia. Am J Physiol 244: R356–R362

    PubMed  CAS  Google Scholar 

  • Higgins PJ, Garlick RL, Bunn HF (1982) Glycosylated hemoglobin in human and animal red cells, role of glucose premeability. Diabetes 31: 743–748

    Article  PubMed  CAS  Google Scholar 

  • Hillman RS, Landau BR, Ashmore J (1959) Structural specifîcity of hexose penetration of rabbit erythrocytes. Am J Physiol 196: 1277–1281

    PubMed  CAS  Google Scholar 

  • Hopfer U, Sigrist-Nelson K, Amman E, Murer H (1976) Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells. J Cell Physiol 89: 805–810

    Article  PubMed  CAS  Google Scholar 

  • Ingermann RL, Terwilliger RC (1981) Intraerythrocytic organic phosphates of fetal and adult seaperch (Embiotoca lateralis): their role in maternal-fetal oxygen transport. J Comp Physiol 144: 253–259

    CAS  Google Scholar 

  • Ingermann RL, Terwilliger RC (1982) Blood parameters and facilitation of maternal-fetal oxygen transfer in a viviparous fish (Embiotoca lateralis). Comp Biochem Physiol 73A: 497–501

    Article  Google Scholar 

  • Ingermann RL, Hall RE, Bissonnette JM, Terwilliger RC (1984) Monosaccharide transport into erythrocytes of the Pacific hagfish, Eptatretus stouti. Mol Physiol 6: 311–320

    CAS  Google Scholar 

  • Ingermann RL, Hall RE, Bissonnette JM, Terwilliger RC (1985a) Monosaccharide transport into hemocytes of a sipunculan worm (Themiste dyscrita). Am J Physiol 249: R139–R144

    PubMed  CAS  Google Scholar 

  • Ingermann RL, Stock MK, Metcalfe J, Bissonnette JM (1985b) Monosaccharide uptake by erythrocytes of the embryonic and adult chicken. Comp Biochem Physiol 80A: 369–372

    Article  CAS  Google Scholar 

  • Jacquez JA (1984) Red blood cell as glucose carrier: significance for placental and cerebral glucose transfer. Am J Physiol 246: R289–R298

    PubMed  CAS  Google Scholar 

  • Jung CY, Rampal AL (1977) Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts. J Biol Chem 252: 5456–5463

    PubMed  CAS  Google Scholar 

  • Kinne R (1976) Properties of the glucose transport system in the renal brush border membrane. Curr Top Membr Transp 8: 209–267

    CAS  Google Scholar 

  • Kondo T, Beutler E (1980) Developmental changes in glucose transport of guinea pig erythrocytes. J Clin Invest 65: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Kozawa S (1914) Beiträge zum arteigenen Verhalten der roten Blutkörperchen. III. Artdifferenzen in der Durchlässigkeit der roten Blutkörperchen. Biochem Z 60: 231–256

    Google Scholar 

  • Krupka RM, Deves R (1981) An experimental test for cyclic versus linear transport models. The mechanism of glucose and choline transport in erythrocytes. J Biol Chem 256: 5410–5416

    Google Scholar 

  • LeFevre PG (1961) Sugar transport in the red blood cells: structure-activity relationships in substrates and antagonists. Pharmacol Rev 13: 39–70

    PubMed  CAS  Google Scholar 

  • LeFevre PG, Marshall JK (1958) Conformational specifîcity in a biological sugar transport system. Am J Physiol 194: 333–337

    PubMed  CAS  Google Scholar 

  • McMillan DE, Brooks SM (1982) Erythrocyte spectrin glucosylation in diabetes. Diabetes 31 (suppl 3): 64–69

    CAS  Google Scholar 

  • Miller JA, Gravallese E, Bunn HF (1980) Nonenzymatic glycosylation of erythrocyte membrane proteins, relevance to diabetes. J Clin Invest 65: 896–901

    Article  PubMed  CAS  Google Scholar 

  • Mooney NA, Young JD (1978) Nucleoside and glucose transport in erythrocytes from new-born lambs. J Physiol 284: 229–239

    PubMed  CAS  Google Scholar 

  • Müller M, Dubiel W, Rathmann J, Rapoport S (1980) Determination and characteristics of energy-dependent proteolysis in rabbit reticulocytes. Eur J Biochem 109: 405–410

    Article  PubMed  Google Scholar 

  • Postma PW, Roseman S (1976) The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim Biophys Acta 457: 213–257

    CAS  Google Scholar 

  • Ricketts EF, Calvin J (1968) Between Pacific tides, 4th edn. Stanford University, Stanford, Cali- fornia

    Google Scholar 

  • Stein WD (1967) The movement of molecules across cell membranes. Academic, New York

    Google Scholar 

  • Taverna RD, Langdon RG (1973) Reversible association of cytochalasin B with the human erythrocyte membrane; inhibition of glucose transport and the stoichiometry of cytochalasin B binding. Biochim Biophys Acta 323: 207–219

    Article  PubMed  CAS  Google Scholar 

  • Terwilliger NB, Terwilliger RC, Schabtach E (1985) Intracellular respiratory proteins of Sipun- cula, Echiura, and Annelida. In: Cohen WD (ed) Blood cells of marine invertebrates, experimental systems in cell biology and comparative physiology. Alan R Liss, New York, p 193

    Google Scholar 

  • Thornalley PJ, Wolff SP, Crabbe MJC, Stern A (1984) The oxidation of oxyhaemoglobin by gly-ceraldehyde and other simple monosaccharides. Biochem J 217: 615–622

    PubMed  CAS  Google Scholar 

  • Widdas WF (1955) Hexose permeability of foetal erythrocytes. J Physiol 127:318–327

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ingermann, R.L., Bissonnette, J.M., Hall, R.E. (1985). Sugar Uptake by Red Blood Cells. In: Gilles, R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70610-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70610-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70612-7

  • Online ISBN: 978-3-642-70610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics