Skip to main content

Metabolism of Invertebrate Red Cells: A Vacuum in Our Knowledge

  • Conference paper
Book cover Circulation, Respiration, and Metabolism

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

When Dr. Isaacks asked us for a contribution on metabolism in invertebrate red cells, we agreed on the condition of a subtitle emphasizing the scarcity of information on the subject. We cannot even address items of such considerable interest as the sites of formation and destruction of these cells, their life history, and the biosynthesis of their most important constituent, the O2 carrier. To our knowledge not one intensive investigation of any one of these topics in any one phylum outside of the chordates has ever been reported, although casual observations are frequently mentioned in studies of cell ultrastructure (e.g., Fontaine and Lambert 1973; Boilly 1974; Fontaine and Hall 1981). Our task must be to describe what little is known about their structure and physiology in hopes of stimulating investigation in the future, and to summarize some exploratory studies on metabolism of RBCs in two representative species, the annelid bloodworm Glycera dibranchiata and the blood clam Noetia ponderosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman PL, Ditmer DS (1961) Blood and other body fluids. Fed Am Soc Exp Biol, Bethesda MD

    Google Scholar 

  • Baba K (1940) The mechanisms of absorption and excretion in a solenogastre, Epimenia verrucosa (Nierstrasz), studies by means of injection methods. J Dept Agric Kyusyu Imperial Univ 6:119–166

    Google Scholar 

  • Bartlett GR (1980) Phosphate compounds in vertebrate red blood cells. Am Zool 20: 103–114

    CAS  Google Scholar 

  • Baumberger JP, Miehaelis L (1931) The blood pigments of Urechis caupo. Biol Bull 61: 417–421

    Article  CAS  Google Scholar 

  • Bliss DE, Skinner DM (1961) Tissue respiration in invertebrates. Am Mus Nat Hist, New York Boilly B (1974) Ultrastructure dés hematies anucléees de Magelona papillicornis F. Muller (annélide polychète). J Microsc 19: 47–58

    Google Scholar 

  • Cohen WD, Nemhauser I (1980) Association of centrioles with the marginal band of a molluscan erythrocyte. J Cell Biol 86: 286–291

    Article  PubMed  CAS  Google Scholar 

  • Cowden RN (1966) A cytochemical study of the nucleated hemoglobin-containing erythrocytes of Glycera americana. Trans Am Microsc Soc 85: 45–63

    Article  Google Scholar 

  • Dales RP (1964) The coelomocytes of the terebellid polyehaete Amphitrite johnstoni. Q J Microsc Sci 105: 263–279

    Google Scholar 

  • Dawson A (1933) Supravital studies on the colored corpuscles of several marine invertebrates. Biol Bull 64: 233–242

    Article  Google Scholar 

  • de Waal DJA, Wilkins RG (1976) Kinetics of the hemerythrin-oxygen interaction. J Biol Chem 251: 2339–2343

    PubMed  Google Scholar 

  • Eddy FB (1977) Oxygen uptake by rainbow trout blood, Salmo gairdneri. J Fish Biol 10: 87–90

    Article  Google Scholar 

  • Emie CC (1982) The biology of Phoronida. Adv Mar Biol 19: 1–89

    Article  Google Scholar 

  • Fontaine AR, Hall BD (1981) The hemoeyte of the holothurian Eupentacta guinguesemita: ultra-structure and maturation. Can J Zool 59: 1884–1891

    Article  Google Scholar 

  • Fontaine AR, Lambert P (1973) The fine structure of the haemocyte of the holothurian Cucumaria miniata ( Brandt ). Can J Zool 51: 323–332

    Google Scholar 

  • Freadman MA, Mangum CP (1976) The function of hemoglobin in the arcid clam Noetia ponderosa. I. Oxygenation in vitro and in vivo. Comp Biochem Physiol 53A: 173–179

    Google Scholar 

  • Grinich NP, Terwilliger RC (1980) The quaternary structure of an unusual high-molecular weight intracellular hemoglobin from the bivalve mollusc Barbatia reeveana. Biochem J 189: 1–8

    PubMed  CAS  Google Scholar 

  • Hetzel HR (1963) Studies on holothurian coelomocytes. I. A survey of coelomocyte types. Biol Bull 125: 289–301

    Article  Google Scholar 

  • Hochachka PW, Hayes FR (1962) The effect of temperature acclimation on pathways of glucose metabolism in the trout. Can J Zool 40: 261–270

    Article  CAS  Google Scholar 

  • Hoffmann RJ, Mangum CP (1970) The function of coelomic cell hemoglobin in the polychaete Glycera dibranchiata. Comp Biochem Physiol 36: 211–228

    Article  PubMed  CAS  Google Scholar 

  • Hopkins HS (1930) Age differences and the respiration in muscle tissues of mollusks. J Exp Zool 56: 209–239

    Article  CAS  Google Scholar 

  • Isaacks RE, Harkness DR (1980) Erythrocyte organic phosphate and hemoglobin function in birds, reptiles and fishes. Am Zool 20: 115–129

    CAS  Google Scholar 

  • Johansen K, Mangum CP, Lykkeboe G (1978) Respiratory properties of the blood of Amazon fishes. Can J Zool 56: 898–906

    Article  CAS  Google Scholar 

  • Kim HD, Zeidler RB, Sallis J, Nicol S, Isaacks RE (1984) Metabolic properties of low ATP erythrocytes of the monotremes. FEBS 167: 83–87

    Article  CAS  Google Scholar 

  • Mangum CP (1977) The annelid hemoglobins: a dichotomy in structure and function. In: Reish DJ, Fauchald K (eds) Essays in memory of Dr. Olga Hartman, Allan Hancock Found., Spec. Publ., Univ So Calif Press, Los Angeles, p 407

    Google Scholar 

  • Mangum CP (1985) Oxygen transport in the invertebrates. Am J Physiol 248: R505–R514

    PubMed  CAS  Google Scholar 

  • Mangum CP, Carhart JA (1972) Oxygen equilibrium of coelomic cell hemoglobin from the blood- worm Glycera dibranchiata. Comp Biochem Physiol 43A: 949–957

    Article  CAS  Google Scholar 

  • Mangum CP, Kondon M (1975) The role of coelomic cell hemerythrin in the sipunculid worm Phascolopsis gouldi. Comp Biochem Physiol 50A: 777–786

    Article  CAS  Google Scholar 

  • Mangum CP, Towle DW (1982) The Nautilus siphuncle as an ion pump. Pac Sci 36: 273–282

    CAS  Google Scholar 

  • Mangum CP, Towle DW (1982) The Nautilus siphuncle as an ion pump. Pac Sci 36: 273–282

    CAS  Google Scholar 

  • Mangum CP, Terwilliger RC, Terwilliger NB, Hall R (1983) Oxygen binding of intact coelomic cells and extracted hemoglobin of the echiuran Urechis caupo. Comp Biochem Physiol 76A: 253–257

    Article  Google Scholar 

  • Manwell C (1960) Histological specificity of respiratory pigments. II. Oxygen transfer systems involving hemerythrins in sipunculid worms of different ecologies. Comp Biochem Physiol 1: 277–285

    Article  CAS  Google Scholar 

  • Manwell C (1977) Superoxide dismutase and NADH diaphorase in haemerthrocytes of sipunculans. Comp Biochem Physiol 58B: 331–338

    Article  CAS  Google Scholar 

  • Mauro NA, Mangum CP (1982) The role of the blood in the temperature dependence of oxidative metabolism in decapod crustaceans. I. Intraspecific responses to seasonal differences in temperature. J Exp Zool 219: 179–188

    Google Scholar 

  • Nemhauer I, Ornberg R, Cohen WD (1980) Marginal bands in blood cells of invertebrates. J Ultrastruct Res 70: 308–317

    Article  Google Scholar 

  • Ochi O (1975a) The erythrocyte and its pigment in echiurans Urechis unicinctus and Ikedosoma gogoshimense. In: Rice ME, Todorovic M (eds) Proc Int Symp Biol Sipuncula Echiura, vol 2. US Natl Mus, Washington, p 197

    Google Scholar 

  • Ochi O (1975b) An electron microscope study on the coelomic cells of some Japanese Sipuncula. In: Rice ME, Todorovic M (eds) Proc Int Symp Biol Sipuncula Echiura, vol 1. US Natl Mus, Washington, p 219

    Google Scholar 

  • Ochi O (1977) X-ray microanalysis on the erythrocytes of sipunculids. Cell Struct Funct 2: 51–54

    Article  CAS  Google Scholar 

  • Petrou AL, Armstrong FA, Sykes AG, Harrington PC, Wilkins RG (1981) Kinetics of the equilibrium of oxygen with monomeric and octameric hemerythrin from Themiste zostericola. Biochim Biophys Acta 670: 370–384

    Google Scholar 

  • Pritchard A, White FN (1981) Metabolism and oxygen transport in the innkeeper Urechis caupo. Physiol Zool 54: 44–54

    Google Scholar 

  • Schumacher HR, Seamonds B (1972) Fine structure of erythrocytes of the common bloodworm Glycera dibranchiata. Cytologia 37: 359–363

    Article  PubMed  Google Scholar 

  • Sean KE, Boilly B (1980) Aspects ultrastructuraux et cytochimiques des hématies nucléees de deux annélides polychètes Notomastus latericeus Sars et Glycera convoluta Keferstein. Can J Zool 58: 589–597

    Article  Google Scholar 

  • Shaw LM, Seamonds B (1972) Characterization of chromatin prepared from the erythrocytes of the common bloodworm Glycera dibranchiata. Life Sci 11: 259–266

    Article  CAS  Google Scholar 

  • Shafie SM, Vinogradov SN, Larson L, McCormick JJ (1976) RNA and protein synthesis in the nucleated erythrocytes of Glycera dibranchiata. Comp Biochem Physiol 53A: 85–88

    Article  CAS  Google Scholar 

  • Stang-Voss C (1970) Zur Ultrastruktur der Blutzellen wirbelloser Tiere. II. Über die Blutzellen von Golflngia gouldi (Sipunculidae). Z Zellforsch 106: 200–208

    Article  PubMed  CAS  Google Scholar 

  • Storch V, Welsch U (1976) Elektromikroskopische und enzymhistochemisehe Untersuchungen über Lophophor und Tentakeln von Lingula unguis L. ( Brachiopoda ). Zool Jahrb Anat Bd 96: 225–237

    Google Scholar 

  • Terwilliger NB, Terwilliger RC, Schabtach E (1983) Two populations of hemerythrin-containing cells in the sipunculan Themiste dyscritum. Am Zool 24: 1025

    Google Scholar 

  • Vernet G (1979) Fine structure of the nemertean worm Lineus lacteus red blood corpuscles. Cytobios 24: 43–46

    PubMed  CAS  Google Scholar 

  • Weber RE, Heidemann W (1976) The coelomic haemoglobin from the bloodworm Glycera rouxii. Molecular and oxygenation properties. Comp Biochem Physiol 57A: 151–155

    Google Scholar 

  • Weber RE, Fange R, Rasmussen K (1979) Respiratory significance of priapulid hemerythrin. Mar Biol Lett 1: 87–97

    CAS  Google Scholar 

  • Wells RMG (1973) Carbonie anhydrase activity in Arenicola marina (L.). Comp Biochem Physiol 46A: 325–331

    Article  CAS  Google Scholar 

  • Wells RMG (1982) Respiratory characteristics of the blood pigments of three worms from an intertidal mudflat. N Z J Zool 9: 243–248

    CAS  Google Scholar 

  • Wells RMG, Dales RP (1975) Haemoglobin function in Terebella lapidaria L., an intertidal terebellid polychaete. J Mar Biol Assoc UK 55: 211–220

    Article  CAS  Google Scholar 

  • Wells RMG, Jarvis PJ, Shumway SE (1980) Oxygen uptake, the circulatory system and the hemoglobin function in the intertidial polychaete Terebella haplochaeta (Ehlers). J Exp Mar Biol Ecol 46:255–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mangum, C.P., Mauro, N.A. (1985). Metabolism of Invertebrate Red Cells: A Vacuum in Our Knowledge. In: Gilles, R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70610-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70610-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70612-7

  • Online ISBN: 978-3-642-70610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics