Skip to main content

Lactate:Glycolytic End Product and Oxidative Substrate During Sustained Exercise in Mammals — The “Lactate Shuttle”

  • Conference paper
Book cover Circulation, Respiration, and Metabolism

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Results of kinetic tracer studies on several mammalian species during rest and prolonged sustained exercise indicate that lactate is a metabolic intermediate which is very active in supplying carbon for a number of important physiological processes. Lactate is a product of glycolysis and glycogenolysis, and it is a precursor for glucose and glycogen resynthesis. Additionally, lactate produced at some sites during exercise is also a substrate for oxidative energy transduction at other sites. This “shuttling of lactate” through the interstitium and vasculature can be quantitatively as important as the release of glucose from the liver for supplying oxidizable substrate. Because much of the glycolytic and gluconeogenic flux passes through the lactate pool, the metabolism of lactate emerges as a critically important component in the overall integration and regulation of intermediary metabolism. This dynamic role of lactate in mammals, as described here, is different from the stagnant role of lactate portrayed from measurements of lactate concentration in the blood and muscle of mammals and other species. Rather than a dead-end metabolite which accumulates as the resuit of muscle anoxia during exercise and waits until the recovery (“O2 debt”) period to be returned to glucose and glycogen, lactate is a dynamic metabolite which turns over rapidly and which can participate in a number of processes during rest, exercise, and recovery from exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bang O (1936) The lactate content of the blood during and after muscular exercise in man. Scand Arch Physiol 74 (Suppl 10): 49–82

    Google Scholar 

  • Brooks GA (1985) Anaerobic threshold: Review of the concept and directions for future research. Med Sci Sports Exercise (in press)

    Google Scholar 

  • Brooks GA, Donovan CM (1983) Effect of endurance training on glucose kinetics during exercise. Am J Physiol 244 (Endocrinol Metab 7): E505–E512

    PubMed  CAS  Google Scholar 

  • Brooks GA, Fahey TD (1984) Exercise physiology: Human biogenergetics and its applications.

    Google Scholar 

  • John Wiley, New York, p 79

    Google Scholar 

  • Brooks GA, Mazzeo RS, Schoeller DA, Budinger TF (1984) Lactate turnover in man during rest and greated exercise. Med Sci Sports Exercise 16: 121

    Google Scholar 

  • Chance B, Quinstorff B (1978) Study of tissue oxygen gradients by single and multiple indicators. Adv Exp Med Biol 94: 331–338

    Google Scholar 

  • Connett RJ, Gaueski TEJ, Honig CR (1984) Lactate accumulation in fully aerobic, working dog gracilis muscle. Am J Physiol 246 (Heart Cire Physiol 15): H120–H128

    PubMed  CAS  Google Scholar 

  • Davies KJA, Packer L, Brooks GA (1981) Biochemical adaptation of mitochondria, muscle and whole animal respiration to endurance traning. Arch Biochem Biophys 209: 539–554

    Article  PubMed  CAS  Google Scholar 

  • Depocas F, Minaire Y, Chatonnet J (1969) Rates of formation and oxidation of lactic acid in dogs at rest and during moderate exercise. Can J Physiol Pharmacol 47: 603–610

    Article  PubMed  CAS  Google Scholar 

  • Donovan CM, Brooks GA (1983) Training affects lactate clearance, not lactate production. Am J Physiol 244 (Endocrinol Metab 7): E83–E92

    PubMed  CAS  Google Scholar 

  • Drury DR, Wick AN (1956) Metabolism of lactic acid in the intact rabbit. Am J Physiol 184: 304–308

    PubMed  CAS  Google Scholar 

  • Eldridge FL (1975) Relationship between turnover and blood concentration in exercising dogs. J Appl Physiol 39: 231–234

    PubMed  CAS  Google Scholar 

  • Everse J, Kaplan NO (1973) Lactate dehydrogenases: structure and function. Adv Enzymol 37: 61–134

    PubMed  CAS  Google Scholar 

  • Fitts RH, Booth FW, Winder WW, Holloszy JO (1975) Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Physiol 228: 1029–1033

    PubMed  CAS  Google Scholar 

  • Freminet A, Le Clerc L (1980) Effect of fasting on glucose lactate and alanin turnover in rats and guinea pigs. Comp Biochem Physiol 65: 363–367

    Google Scholar 

  • Freminet A, Bursax E, Poyart CB (1972) Mesure de la vitesse de renouvellement du lactate chez lerat per perfusion de 14C-lactate. Pflügers Arch 334: 292–297

    Article  Google Scholar 

  • Gaesser GA, Brooks GA (1984) Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exercise 16: 29–43

    CAS  Google Scholar 

  • Green HJ, Hughson RL, Orr GW, Ranney DA (1983) Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol: Respir Environ Exercise Physiol 54: 1032–1038

    Google Scholar 

  • Hetenyi G, Perez G, Vranic M (1983) Turnover and precursor-product relationships of nonlipid metabolites. Physiol Rev 63: 606–667

    PubMed  CAS  Google Scholar 

  • Issekutz B Jr (1970) Studies on hepatic glucose cycles in normal and methylprednisolone treated dogs. Metabolism 26: 157–170

    Article  Google Scholar 

  • Issekutz B Jr (1978) Role of beta-adrenergic receptors in mobilization of energy sources in exercising dogs. J Appl Physiol:Respir Environ Exercise Physiol 44: 869–876

    Google Scholar 

  • Issekutz B Jr, Paul P, Miller HI (1967) Metabolism in normal and pancreatomized dogs during steady-state exercise. Am J Physiol 213: 857–860

    PubMed  CAS  Google Scholar 

  • Issekutz B Jr, Shaw WAS, Issekutz AC (1976) Lactate metabolism in resting and exercising dogs.217 J Appl Physiol 40: 312–319

    CAS  Google Scholar 

  • Jöbsis FF, Stainsby WN (1968) Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 4: 292–300

    Article  PubMed  Google Scholar 

  • Karagiorogos A, Garcia JF, Brooks GA (1979) Growth hormone response to continuous and intermittent exercise. Med Sci Sport 11: 302–307

    Google Scholar 

  • Karlsson J, Hulten B, Sjodin B (1974) Substrate activation and product inhibition of LDH activity in human skeletal muscle. Acta Physiol Scand 92: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Katz JF, Okajima F, Chenoweth M, Dunn A (1981) The determination of lactate turnover in vivo with 3H and 14-labelled lactate. Biochem J 194: 513–524

    PubMed  CAS  Google Scholar 

  • Kreisberg RA, Pennington LF, Boshell BR (1970) Lactate turnover and gluconeogenesis in normal and obese humans. Diabetes 19: 53–63

    PubMed  CAS  Google Scholar 

  • Lehmann M, Wybitul K, Spori U, Keul J (1982) Catecholamines, cardiocirculatory and metabolic response during graduated and continuously increasing exercise. Int Arch Occup Environ Health 50: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1975) Biochemistry: The molecular basis of cell structure and function. Worth, New York, p 431

    Google Scholar 

  • Lusk G (1924) Analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem 59: 41–42

    CAS  Google Scholar 

  • Mazzeo RS, Brooks GA, Budinger TF, Seholler DA (1982) Puise injection, 13C tracer studies of lactate metabolism in humans during rest ad two levels of exercise. Biomed Mass Spectrom 9: 310–314

    Article  PubMed  CAS  Google Scholar 

  • Mole PA, Baldwin KM, Terjung RL, Holloszy JO (1973) Enzymatic pathways of pyruvate metabolism in skeletal muscle: adaptations to exercise. Am J Physiol 224: 50–54

    PubMed  CAS  Google Scholar 

  • Newsholme EA, Leech AR (1983) Biochemistry for the Médical Sciences. John Wiley, Chichester

    Google Scholar 

  • Nisselbaum JS, Packer DE, Bodansky O (1964) Comparison of the actions of human, brain, liver, and heart lactic dehydrogenase variants on nucleotide analogs on the substrate analogues in the absence and in the presence of oxalate and oxanmate. J Biol Chem 239: 2830–2834

    PubMed  CAS  Google Scholar 

  • Pirnay F, Lamy M, Dujardin J, Deroanne R, Petit JM (1972) Analysis of femoral venous blood during maximum muscular exercise. J Appl Physiol 33: 289–292

    PubMed  CAS  Google Scholar 

  • Reilly PKR, Chandrasena LG (1977) Sheep lactate entry-rate measurements: error due to sampling jugular blood. Am J Physiol (Endocrinol Metab Gasterointest Physiol 2 ): E138–E140

    Google Scholar 

  • Richter EA, Ploug T, Galbo H (1984) Increased muscle glucose uptake during contractions: no need for insulin. Med Sci Sports Exercise 16: 173

    Google Scholar 

  • Searle GL, Cavalieri RR (1972) Determination of lactate kinetics in the human analysis of data from single injection vs. continuous infusion methods. Proc Soc Exp Biol Med 139: 1002–1006

    PubMed  CAS  Google Scholar 

  • Stanley WC, Gertz EW, Wisneski JA, Neese RA, Brooks GA (1984) Glucose and lactate turnover in man during rest and exercise studied with simultaneous infusion of 14C-glucose and 13C-lactate. Med Sci Sports Exercise 16: 136

    Google Scholar 

  • Winder WW, Hagberg JM, Hickson RC, Ehsani AA, McLane JA (1978) Time course of sympathoadrenev adaptation to endurance exercise training in man. J Appl Physiol 45: 370–374

    PubMed  CAS  Google Scholar 

  • York J, Oscai LB, Penny DG (1974) Alterations in skeletal muscle lactic dehydrogenase isozymes following exercise traning. Biochem Biophys Res Commun 61: 1387–1393

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brooks, G.A. (1985). Lactate:Glycolytic End Product and Oxidative Substrate During Sustained Exercise in Mammals — The “Lactate Shuttle”. In: Gilles, R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70610-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70610-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70612-7

  • Online ISBN: 978-3-642-70610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics