Skip to main content

Cardiopulmonary Adaptations in Birds for Exercise at High Altitude

  • Conference paper
Circulation, Respiration, and Metabolism

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

In general, birds are more tolerant of hypoxia than mammals. At an altitude of 6,100 m, unacclimatized house sparrows (Passer domesticus) are as active and alert as at sea level and can readily fly (Tucker 1968a). On the other hand, unacclimatized mice in a hypobaric chamber at the equivalent of 6,100 m are comatose, have difficulty moving, and show a 10 °C drop in their body temperature. Even at 3,700 m, mice are lethargie, walk slowly, or do not move at ail around the chamber. Resting and unacclimatized men taken to 6,100 m in a hypobaric chamber are in a state of hypoxic collapse after only 10 min and even after acclimatization to this altitude can only do heavy work for 5 min (Tucker 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin J, Jardel J-P, Montague T, Tomkin R (1984) Energy metabolism in penguin swimming muscles. Mol Physiol 6:33–42

    CAS  Google Scholar 

  • Black CP, Tenney SM (1980a) Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir Physiol 39:217–239

    Article  PubMed  CAS  Google Scholar 

  • Black CP, Tenney SM (1980b) Pulmonary hemodynamie responses to acute and chronic hypoxia in two waterfowl species. Comp Biochem Physiol 67A:291–293

    Article  Google Scholar 

  • Brown L (1976) Birds of prey, their biology and ecology. Hamlyn, London, p 63

    Google Scholar 

  • Butler PJ (1982) Respiration during flight and diving in birds. In:Addink ADF, Sprank N (eds) Exogenous and endogenous influences on metabolic and neural control, vol I. Pergamon, Oxford, pp 103–114

    Google Scholar 

  • Catlett RH, Walters TW, Dutro PA (1978) The effect of flying and not flying on myoglobin content of heart muscle of the pigeon Columbia livia domestica. Comp Biochem Physiol 59A:401–402

    Article  Google Scholar 

  • Davies DG, Nolan WF, Sexton J (1983) Medullary blood flow during hypocapnic hypoxia. Phy- siologist 26:40

    Google Scholar 

  • Faraci FM (1984) Control of the circulation in high and low altitude adapted birds. PhD Thesis, Kansas State University, Manhattan, Kansas, USA

    Google Scholar 

  • Faraci FM, Kilgore DL Jr, Fedde MR (1984a) Oxygen delivery to the heart and brain during hypoxia:Pekin duck vs bar-headed goose. Am J Physiol 247 (Regulatory Integrative Comp Physiol 16):R69–R75

    PubMed  CAS  Google Scholar 

  • Faraci FM, Kilgore DL Jr, Fedde MR (1984b) Attenuated pulmonary pressor response to hypoxia in bar-headed geese. Am J Physiol 247 (Regulatory Integrative Comp Physiol 16):R402–R403

    PubMed  CAS  Google Scholar 

  • Fedde MR, Caidinet GH III (1977) Histochemical studies of respiratory muscles of chicken. Am J Vet Res 38:585–589

    PubMed  CAS  Google Scholar 

  • George JC, Berger AJ (1966) Avian myology. Academic, New York

    Google Scholar 

  • Gray SD, Renkin EM (1978) Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles of rabbits. Microvasc Res 16:406–425

    Article  PubMed  CAS  Google Scholar 

  • Gray SD, McDonagh PF, Gore RW (1983) Comparison of funetional and total capillary densities in fast and slow muscles of the chicken. Pflügers Arc h 397:209–213

    Article  CAS  Google Scholar 

  • Grubb BR (1982) Cardiac output and stroke volume in exercising ducks and pigeons. J Appl Physiol:Respir Environ Exercise Physiol 53:207–211

    CAS  Google Scholar 

  • Grubb B, Mills CD, Colacino JM, Schmidt-Nielsen K (1977) Effect of arterial carbon dioxide on cerebral blood flow in ducks. Am J Physiol:Heart Cire Physiol 1:H596–H601

    Google Scholar 

  • Grubb B, Colacino JM, Schmidt-Nielsen K (1978) Cerebral blood flow in birds:effect of hypoxia. Am J Physiol 234 (Heart Cire Physiol 3:H230–H234

    Google Scholar 

  • Heistad DD, Kontos HA (1983) Cerebral circulation. In:Shepherd JT, Abboud FM (eds) The cardiovascular system. Peripheral circulation and organ blood flow. American Physiological Society, Bethesda, Maryland, pp 137–182 (Handbook of physiology, sect 2, vol III, part 1, chapt 5 )

    Google Scholar 

  • James NT (1972) A study of the concentration and function of mammalian and avian myoglobin in Type I skeletal muscle fibres. Comp Biochem Physiol 41B:457–460

    CAS  Google Scholar 

  • James NT, Meek GA (1979) Stereological analysis of the structure of mitochondria in pigeon skeletal muscle. Cell Tissue Res 202:493–503

    Article  PubMed  CAS  Google Scholar 

  • Lack D (1960) The height of bird migration. Br Birds 53:5–10

    Google Scholar 

  • Laybourne RC (1974) Collision between a vulture and an aircraft at an altitude of 37,000 feet. Wilson Bull 86:461–462

    Google Scholar 

  • Livingston DL, La Mar GN, Brown WD (1983) Myoglobin diffusion in bovine heart muscle. Science 220:71–73

    Article  PubMed  CAS  Google Scholar 

  • Mai JV, Edgerton VR, Barnard RJ (1970) Capillarity of red, white and intermediate muscle fibers in trained and untrained guinea-pigs. Experientia 26:1222–1223

    Article  PubMed  CAS  Google Scholar 

  • Manville RH (1963) Altitude record for mallard. Wilson Bull 75:92

    Google Scholar 

  • Meinertzhagen R (1955) The speed and altitude of bird flight. Ibis 97:81–117

    Article  Google Scholar 

  • Mill GK, Baldwin J (1983) Biochemical correlates of swimming and diving behavior in the little penguin Eudyptula minor. Physiol Zool 56:242–254

    CAS  Google Scholar 

  • Pages T, Planas J (1983) Muscle myoglobin and flying habits in birds. Comp Biochem Physiol 74A:289–294

    Article  Google Scholar 

  • Pennycuick CJ, Rezende MA (1984) The spécifié power output of aerobic muscle, related to the power density of mitochondria. J Exp Biol 108:377–392

    Google Scholar 

  • Petschow D, Würdinger I, Baumann R, Duhm J, Braunitzer G, Bauer C (1977) Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol:Respir Environ Exercise Physiol 42:139–143

    Google Scholar 

  • Piiper J, Scheid P (1975) Gas transport efficacy of gills, lungs and skin:Theory and experimental data. Respir Physiol 23:209–221

    Google Scholar 

  • Rollema HS, Bauer C (1979) The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J Biol Chem 254:12038–12043

    PubMed  CAS  Google Scholar 

  • Rosser BWC, George JC (1984) Some histochemical properties of the fiber types in the pectoralis muscle of an emu (Dromaius novaeholîandiae). Anat Rec 209:301–305

    Article  PubMed  CAS  Google Scholar 

  • Swan LW (1961) The ecology of the high Himalayas. Sci Am 205:68–78

    Article  Google Scholar 

  • Swan LW (1970) Goose of the Himalayas. Nat Hist 79:68–75

    Google Scholar 

  • Talesara GL, Goldspink G (1978) A combined histochemical and biochemical study if myofibrillar ATPase in pectoral, leg and cardiac muscle of several species of bird. Histochem J 10:695–710

    Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol 44:1–10

    Google Scholar 

  • Tucker VA (1968a) Respiratory physiology of house sparrows in relation to high-altitude flight J Exp Biol 48:55–66

    CAS  Google Scholar 

  • Tucker VA (1968b) Respiratory exchange and evaporative water loss in the flying budgerigar. J Exp Biol 48:67–87

    Google Scholar 

  • Tucker VA (1972) Respiration during flight in birds. Respir Physiol 14:75–82

    Article  PubMed  CAS  Google Scholar 

  • Tucker VA (1974) Energetics of natural avian flight. In:Paynter RA Jr (ed) Avian energetics. Nuttall Ornithological Club, Cambridge, Mass., pp 298–328

    Google Scholar 

  • Walkinshaw L (1973) Cranes of the world. Winchester, New York, p 4, 47

    Google Scholar 

  • Weber RE, Hemmingsen EA, Johansen K (1974) Functional and biochemical studies of penguin myoglobin. Comp Biochem Physiol 49B:197–214

    CAS  Google Scholar 

  • West JB, Hackett PH, Maret KH, Milledge JS, Peters RM JR, Pizzo CJ, Winslow RM (1983) Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol:Respir Environ Exercise Physiol 55:678–687

    Google Scholar 

  • Wittenberg BA, Wittenberg JB (1975) Rôle of myoglobin in the oxygen supply to red skeletal muscle. J Biol Chem 250:9038–9043

    PubMed  CAS  Google Scholar 

  • Wittenberg JB (1970) Myoglobin-facilitated oxygen diffusion:Role of myoglobin in oxygen entry into muscle. Physiol Rev 50:559–636

    PubMed  CAS  Google Scholar 

  • Wolfenson D, Frei YF, Berman A (1982) Blood flow distribution during artificially induced respiratory hypocapnic alkalosis in the fowl. Respir Physiol 50:87–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fedde, M.R., Faraci, F.M., Kilgore, D.L., Cardinet, G.H., Chatterjee, A. (1985). Cardiopulmonary Adaptations in Birds for Exercise at High Altitude. In: Gilles, R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70610-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70610-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70612-7

  • Online ISBN: 978-3-642-70610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics