Pathophysiological Aspects of Cerebral Blood Flow in Respect of Extracranial-Intracranial Anastomosis

  • A. Hartmann
Part of the Advances in Neurosurgery book series (NEURO, volume 13)


It is a constant wish of neurologists to treat successfully patients suffering from acute ischemia of the brain. An increase of regional cerebral blood flow (rCBF) in the ischemic area by hyperventilation may reduce the size of infarction under experimental conditions (1). At present, however, it is not known whether this effect leads to clinical improvement. Neurosurgeons have provided us with a technique which may increase blood supply to certain regions with reduced flow, i.e., the connection of an extracranial artery to an intracranial branch — so-called extracranial-intracranial anastomosis (EICA). To understand the logic of bypassing narrowed arteries it seems necessary to bear in mind certain physiological and pathophysiological principles in respect of the blood flow and metabolism of the brain in acute ischemia. Here I will summarize certain observations which might be important in understanding the physiological basis of EICA.


Cerebral Blood Flow Middle Cerebral Artery Middle Cerebral Artery Occlusion Perfusion Pressure Regional Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soloway, M., Nadel, W., Albin, M.S. et al.: The effect of hyperventilation on subsequent cerebral infarction. Anesthesiology 29, 975–980 (1968)CrossRefGoogle Scholar
  2. 2.
    Crockard, H.A., Symon, L., Branston, N.M., Juhasz, J.: Changes in regional cortical tissue tension and cerebral blood flow during temporary middle cerebral artery occlusion in baboons. J. Neurolog. Sc. 27, 29–44 (1976)CrossRefGoogle Scholar
  3. 3.
    Ames III A., Wright, R.L., Kowada, M., Thurston, J.M., Majno, G.: Cerebral ischemia. II. The no-reflow phenomenon. Am. J. Pathol. 52, 437–453 (1968)PubMedGoogle Scholar
  4. 4.
    Astrup, J., Siesjö, B.K., Symon, L.: Threshold in cerebral ischemia — the ischemic penumbra. Stroke 12, 723–725 (1981)PubMedCrossRefGoogle Scholar
  5. 5.
    Branston, N.M., Symon, L., Crockard, H.A. et al.: Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol. 45, 195–208 (1974)PubMedCrossRefGoogle Scholar
  6. 6.
    Heiss, W.S., Hayakawa, T., Waltz, A.G.: Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch. Neurol. 33, 813–820 (1976)PubMedGoogle Scholar
  7. 7.
    Branston, N.M., Strong, A.J., Symon, L.: Extracellular potassium activity, evoked potential and tissue blood flow. Relationships during progressive ischemia in baboon cerebral cortex. J. Neurol. Sci. 32, 305–321 (1977)PubMedCrossRefGoogle Scholar
  8. 8.
    Symon, L., Brierly, J.B.: Morphological changes in cerebral blood vessels in chronic ischemic infarction: Flow correlation obtained by the hydrogen clearance method. In: Cérvos-Navarro, J., Betz, E., Matakas, F. et al. (eds.) The cerebral vessel wall. New York, Raven Press, pp. 165–174 (1976)Google Scholar
  9. 9.
    Symon, L., Crockard, H.A., Dorsch, N.W.C. et al.: Local cerebral blood flow and vascular reactivity in a chronic stable stroke model in baboons. Stroke 6, 482–492 (1975)PubMedCrossRefGoogle Scholar
  10. 10.
    Tamura, A., Asano, T., Sano, K.: Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke 11, 487–493 (1980)PubMedCrossRefGoogle Scholar
  11. 11.
    Nicholson, D., ten Bruggencate, G., Steinberg, R. et al.: Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc. Natl. Acad. Sci. USA 74, 1287–1290 (1977)PubMedCrossRefGoogle Scholar
  12. 12.
    Symon, L., Pasztor, E., Branston, N.M.: The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: An experimental study by the technique of hydrogen clearance in baboons. Stroke 5, 355–364 (1974)PubMedCrossRefGoogle Scholar
  13. 13.
    Morawitz, R.B., De Girolami, U., Ojemann, R.G. et al.: Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys. Stroke 9, 143–149 (1978)CrossRefGoogle Scholar
  14. 14.
    Morawitz, R.B., Marcoux, F.W., Crowell, R.M. et al.: Identical thresholds for cerebral ischemia in white and gray matter. Acta Neurol.Scand. 60(Suppl. 72), 282–283 (1979)Google Scholar
  15. 15.
    Gratz’, O., Schmiedeck, P., Spetzler, R. et al.: Clinical experience with extra-intracranial arterial anastomosis in 65 cases. J. Neurosurg. 44, 313–324 (1976)CrossRefGoogle Scholar
  16. 16.
    Sokoloff, L.: Aspects of cerebral circulatory physiology of relevance to cerebrovascular disease. Neurology 11, 34 (1961)Google Scholar
  17. 17.
    Hartmann, A.: Diaschisis and its course in patients with ischemic infarction. In: Betz, E. et al. (eds.) Pathophysiology and pharmacotherapy of cerebrovascular diseases. Witzstrock, pp. 241–245 (1980)Google Scholar
  18. 18.
    Cronquist, S., Agee, F.: Regional cerebral blood flow in intracranial tumors. Acta Radiol. (Diagn.) 7, 393 (1968)Google Scholar
  19. 19.
    Symon, L., Held, K., Dorsch, N.W.C.: A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 4, 139–147 (1973)PubMedCrossRefGoogle Scholar
  20. 20.
    Winn, H.K., Welsh, J.E., Rubio, R., Berne, R.M.: Brain adenosine production in rat during sustained alteration of systemic blood pressure. Am. J. Physiol. 239, H636–H641 (1980)PubMedGoogle Scholar
  21. 21.
    Klocke, F.J., Mates, R.E., Copley, D.P., Drlick, A.E.: Physiology of the coronary circulation in health and coronary artery disease. In: Klocke, F.J., Yu, P.N., Goodwin, J.T. (eds.) Symposium on Coronary Circulation. Lea & Febiger, Philadelphia, Chapter 1, pp. 1–17 (1976)Google Scholar
  22. 22.
    Häggendal, E., Johanson, B.: Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol. Scand. 66 (Suppl. 258), 27–53 (1965)CrossRefGoogle Scholar
  23. 23.
    Strandgaard, S.: Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation 53, 720–727 (1976)PubMedGoogle Scholar
  24. 24.
    Jones, J.V., Fitch, W., MacKenzie, E.T., Strandgaard, S., Harper, A.M.: Lower limit of cerebral blood flow autoregulation in the baboon. Circ. Res. 39, 555–557 (1976)PubMedGoogle Scholar
  25. 25.
    Gumerlock, M.K., Ono, H., Neuwelt, E.A.: Can a patent extracranialintracranial bypass provoke the conversion of an intracranial arterial stenosis to a symptomatic occlusion? Neurosurgery 12, 391–400 (1983)PubMedCrossRefGoogle Scholar
  26. 26.
    Astrup, J., Møller Sørensen, P., Rahbek Sorensen, H.: Oxygen and glucose consumption related to Na+-K+ transport in the canine brain. Stroke 12, 726–730 (1981)PubMedCrossRefGoogle Scholar
  27. 27.
    Astrup, J., Skovsted, P., Gjerris, F. et al.: Increase in extra-cellular potassium in the brain during circulatory arrest: Effects of hypothermia, lidocaine and thiopental. Anesthesiology 55, 256–262 (1981)PubMedCrossRefGoogle Scholar
  28. 28.
    Astrup, J., Møller Sørensen, P., Rahbek Sorensen, H.: Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital and lidocaine. Anesthesiology 55, 263–268 (1981)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • A. Hartmann
    • 1
  1. 1.Abteilung für NeurologieUniversitäts-Nervenklinik und PoliklinikBonn 1Germany

Personalised recommendations