DNA-Poly(ADP-Ribose) Polymerase Complex: Isolation of the DNA Wrapping the Enzyme Molecule

  • Marie E. Ittel
  • Jenny Jongstra-Bilen
  • Claude Niedergang
  • Paul Mandel
  • Etienne Delain
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Since the discovery of poly(ADP-ribose) it has been known that DNA is required for the synthesis of the polymer from NAD+ [1, 2]. It was confirmed later with purified poly(ADP-ribose) polymerase that double-stranded DNA is necessary to express its activity in vitro [3–7], Covalently-closed circular double-stranded DNA does not have any effect on the enzyme activity [7, 8]. It has been found by Ohgushi et al. [8] that the relative efficiency of enzyme activation by various DNA samples is closely related to their capacity to bind to the enzyme. These authors have suggested that poly(ADP-ribose) polymerase is activated by, and binds to, nicks or ends on the DNA. The highly purified calf thymus poly(ADP-ribose) polymerase preparation obtained in our laboratory [9, 10] contains a fraction of DNA, called sDNA, which has been shown to activate the enzyme more efficiently than total calf thymus DNA [6]. A DNA fraction called “active DNA” with high enzyme binding and activating capacity has also been isolated during the purification of bovine thymus poly(ADP-ribose) polymerase by Yoshihara and co-workers [5, 11]. The high affinity of this enzyme for the “active DNA” has been attributed to its small size and its high content of nicks [8].


Migration Phenol Agarose Bromide Adenosine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43PubMedCrossRefGoogle Scholar
  2. 2.
    Chambon P, Weill JD, Doly J, Strosser MT, Mandel P (1966) On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun 25:638–643CrossRefGoogle Scholar
  3. 3.
    Yoshihara K (1972) Complete dependency of poly(ADP-ribose) synthesis on DNA and its inhibition by actinomycine D. Biochem Biophys Res Commun 47:119–125PubMedCrossRefGoogle Scholar
  4. 4.
    Okayama H, Edson CM, Fukushima M, Ueda K, Hayaishi O (1977) Purification and properties of poly(adenosine diphosphate ribose) synthetase. J Biol Chem 252:7000–7005PubMedGoogle Scholar
  5. 5.
    Yoshihara K, Hashida T, Tanaka Y, Ogushi H, Yoshihara H, Kamiya T (1978) Bovine thymus poly(adenosine diphosphate ribose) polymerase. J Biol Chem 253:6459–6466PubMedGoogle Scholar
  6. 6.
    Niedergang C, Okazaki H, Mandel P (1979) Properties of purified calf thymus poly(adenosine diphosphate ribose) polymerase. Eur J Biochem 102:43–57PubMedCrossRefGoogle Scholar
  7. 7.
    Benjamin RC, Gill DM (1980) Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. J Biol Chem 255:10502–10508PubMedGoogle Scholar
  8. 8.
    Ohgushi H, Yoshihara K, Kamiya T (1980) Bovine thymus poly(adenosine diphosphate ribose) polymerase. J Biol Chem 255:6205–6211PubMedGoogle Scholar
  9. 9.
    Okazaki H, Niedergang C, Mandel P (1976) Purification and properties of calf thymus polyadenosine diphosphate ribose polymerase. FEBS Lett 62:255–258PubMedCrossRefGoogle Scholar
  10. 10.
    Mandel P, Okazaki H, Niedergang C (1977) Purification and properties of calf thymus polyadenosine diphosphate ribose polymerase. FEBS Lett 84:331–336PubMedCrossRefGoogle Scholar
  11. 11.
    Hashida T, Ohgushi H, Yoshihara K (1979) Highly effective DNA in stimulating poly(ADP-ribose) polymerase reaction. Biochem Biophys Res Commun 88:305–311PubMedCrossRefGoogle Scholar
  12. 12.
    Okazaki H, Niedergang C, Mandel P (1980) Adenosine diphosphate ribosylation of histone H1 by purified calf thymus polyadenosine diphosphate ribose polymerase. Biochimie 62:147–157PubMedCrossRefGoogle Scholar
  13. 13.
    Kawaichi M, Ueda K, Hayaishi O (1981) Multiple auto-poly(ADP-ribosylation) of rat liver poly(ADP-ribose) synthetase. J Biol Chem 256:9483–9489PubMedGoogle Scholar
  14. 14.
    Yoshihara K, Hashida T, Tanaka Y, Matsunami N, Yamagushi A, Kamiya T (1981) Mode of enzyme-bound poly(ADP-ribose) synthesis and histone modification by reconstituted poly-(ADP-ribose) polymerase-DNA-cellulose complex. J Biol Chem 256:3471–3478PubMedGoogle Scholar
  15. 15.
    De Murcia G, Jongstra-Bilen J, Ittel ME, Mandel P, Delain E (1983) Poly(ADP-ribose) polymerase automodification and interaction with DNA: electron microscopic visualization. EMBO J 2:543–548PubMedGoogle Scholar
  16. 16.
    Zahradka P, Ebisuzaki K (1982) A shuttle mechanism for DNA-protein interactions. Eur J Biochem 127:579–585PubMedCrossRefGoogle Scholar
  17. 17.
    Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46:931–954PubMedCrossRefGoogle Scholar
  18. 18.
    Felsenfeld G (1978) Chromatin. Nature (London) 271:115–121CrossRefGoogle Scholar
  19. 19.
    McGhee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156PubMedCrossRefGoogle Scholar
  20. 20.
    Liu LF, Wang JC (1978) DNA-DNA gyrase complex: the wrapping of the DNA duplex outside the enzyme. Cell 15:979–984PubMedCrossRefGoogle Scholar
  21. 21.
    Moore CL, Klevan L, Wang JC, Griffith JD (1983) Gyrase-DNA complexes visualized as looped structures by electron microscopy. J Biol Chem 258:4612–4617PubMedGoogle Scholar
  22. 22.
    Jongstra-Bilen J, Ittel ME, Niedergang C, Vosberg HP, Mandel P (1983) DNA topoisomerase I from calf thymus is inhibited in vitro by poly (ADP-ribosylation). Eur J Biochem 136:391–396PubMedCrossRefGoogle Scholar
  23. 23.
    Klevan L, Wang JC (1980) Deoxyribonucleic acid gyrase-deoxyribonucleic acid complex containing 140 base pairs of deoxyribonucleic acid and an α2β2 protein core. Biochemistry 19: 5229–5234PubMedCrossRefGoogle Scholar
  24. 24.
    Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, New York, p 458Google Scholar
  25. 25.
    Maniatis T, Jeffrey A, Van de Sande H (1975) Chain length determination of small double and single stranded DNA molecules by Polyacrylamide gel electrophoresis. Biochemistry 14:3787–3794PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Marie E. Ittel
    • 1
  • Jenny Jongstra-Bilen
    • 2
  • Claude Niedergang
    • 1
  • Paul Mandel
    • 1
  • Etienne Delain
    • 3
  1. 1.Centre de Neurochimie du CNRSStrasbourg CedexFrance
  2. 2.Dept. of Neurobiology, School of MedicineStanford UniversityStanfordUSA
  3. 3.Laboratoire de Microscopie Cellulaire et Moléculaire, LA 147 du CNRSInstitut Gustave RoussyVillejuifFrance

Personalised recommendations