Skip to main content

Characterization of NAD: Arginine Mono(ADP-Ribosyl)-Transferases in Turkey Erythrocytes: Determinants of Substrate Specificity

  • Chapter
ADP-Ribosylation of Proteins

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Mono(ADP-ribosylation) is catalyzed by transferases identified in viruses, bacteria, and animal cells [1]. Its function has thus far been clearly defined only for certain bacterial toxins that exert their effects on animal tissues by catalyzing the mono(ADP-ribosylation) of critical cellular proteins [1–5]. One of these toxins, choleragen (cholera toxin), an NAD:arginine mono(ADP-ribosyl)transferase, causes the activation of the hormone-sensitive adenylate cyclase from animal tissues by ADP-ribosylating a guanine nucleotide-binding stimulatory protein termed Gs [5]. In vitro, choleragen also catalyzes the ADP-ribosylation of several proteins not related to the cyclase system as well as low molecular weight guanidino compounds, such as the amino acid arginine [6–8]. Animal tissues contain NAD:arginine (ADP-ribosyl)transferases that catalyze reactions similar to those of choleragen [7, 9–11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vaughan M, Moss J (1981) Mono(ADP-ribosyl)transferases and their effects on cellular metabolism. Curr Top Cell Regul 20:205–246

    PubMed  CAS  Google Scholar 

  2. Pappenheimer AMJr (1977) Diphtheria toxin. Annu Rev Biochem 46:69–94

    Article  PubMed  CAS  Google Scholar 

  3. Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2288

    Article  PubMed  CAS  Google Scholar 

  4. Katada T, Ui M (1982) ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem 257: 7210–7216

    PubMed  CAS  Google Scholar 

  5. Gilman AG (1984) Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J Clin Invest 73:1–4

    Article  PubMed  CAS  Google Scholar 

  6. Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457

    PubMed  CAS  Google Scholar 

  7. Moss J, Vaughan M (1978) Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75: 3621–3624

    Article  PubMed  CAS  Google Scholar 

  8. Watkins PA, Moss J, Vaughan M (1980) Effects of GTP on choleragen-catalyzed ADP ribosylation of membrane and soluble proteins. J Biol Chem 255:3959–3963

    PubMed  CAS  Google Scholar 

  9. Yost DA, Moss J (1983) Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J Biol Chem 258:4926–4929

    PubMed  CAS  Google Scholar 

  10. Soman G, Mickelson JR, Louis CF, Graves DJ (1984) NAD:guanidino group specific mono ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun 120:973–980

    Article  PubMed  CAS  Google Scholar 

  11. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M (1984) ADP-ribosyltransferase from hen liver nuclei. Purification and characterization. J Biol Chem 259:2022–2029

    PubMed  CAS  Google Scholar 

  12. Moss J, Stanley SJ, Watkins PA (1980) Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255:5838–5840

    PubMed  CAS  Google Scholar 

  13. Moss J, Stanley SJ (1981) Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci USA 78:4809–4812

    Article  PubMed  CAS  Google Scholar 

  14. Moss J, Stanley SJ, Osborne JCJr (1981) Effect of self-association on activity of an ADP-ribosyltransferase from turkey erythrocytes. Conversion of inactive oligomers to active protomers by chaotropic salts. J Biol Chem 256:11452–11456

    PubMed  CAS  Google Scholar 

  15. Moss J, Stanley SJ, Osborne JCJr (1982) Activation of an NAD:arginine ADP-ribosyltransferase by histone. J Biol Chem 257:1660–1663

    PubMed  CAS  Google Scholar 

  16. Moss J, Osborne JCJr, Stanley SJ (1984) Activation of an erythrocyte NAD:arginine ADP-ribosyltransferase by lysolecithin and nonionic and zwitterionic detergents. Biochemistry 23: 1353–1357

    Article  PubMed  CAS  Google Scholar 

  17. Moss J, Stanley SJ, Oppenheimer NJ (1979) Substrate specificity and partial purification of a stereospecific NAD- and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J Biol Chem 254:8891–8894

    PubMed  CAS  Google Scholar 

  18. West REJr, Moss J (1984) NAD:arginine mono-ADP-ribosyltransferases in turkey erythrocytes: Characterization of a membrane-associated transferase different from the cytosolic enzymes. Fed Proc 43:1786

    Google Scholar 

  19. Powers SG, Riordan JF (1975) Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase. Proc Natl Acad Sci USA 72:2616–2620

    Article  PubMed  CAS  Google Scholar 

  20. Moss J, Watkins PA, Stanley SJ, Purnell MR, Kidwell WR (1984) Inactivation of glutamine synthetases by an NAD:arginine ADP-ribosyltransferase. J Biol Chem 259:5100–5104

    PubMed  CAS  Google Scholar 

  21. Kingdon HS, Shapiro BM, Stadtman ER (1967) Regulation of glutamine synthetase, VIII ATP: Glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase. Proc Natl Acad Sci USA 58:1703–1710

    Article  PubMed  CAS  Google Scholar 

  22. Stadtman ER, Ginsburg A, Ciardi JE, Yeh J, Hennig SB, Shapiro BM (1970) Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylylation and deadenylylation reactions. Adv Enzyme Regul 8:99–118

    Article  PubMed  CAS  Google Scholar 

  23. Cimino F, Anderson WB, Stadtman ER (1970) Ability of nonenzymic nitration or acetylation of E. coli glutamine synthetase to produce effects analogous to enzymic adenylylation. Proc Natl Acad Sci USA 66:564–571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moss, J., West, R.E., Osborne, J.C., Levine, R.L. (1985). Characterization of NAD: Arginine Mono(ADP-Ribosyl)-Transferases in Turkey Erythrocytes: Determinants of Substrate Specificity. In: Althaus, F.R., Hilz, H., Shall, S. (eds) ADP-Ribosylation of Proteins. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70589-2_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70589-2_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70591-5

  • Online ISBN: 978-3-642-70589-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics